These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37550277)

  • 1. Experimental validation of the free-energy principle with in vitro neural networks.
    Isomura T; Kotani K; Jimbo Y; Friston KJ
    Nat Commun; 2023 Aug; 14(1):4547. PubMed ID: 37550277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active inference leads to Bayesian neurophysiology.
    Isomura T
    Neurosci Res; 2022 Feb; 175():38-45. PubMed ID: 34968557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A heuristic perspective on non-variational free energy modulation at the sleep-like edge.
    Fernandez-Leon JA; Acosta G
    Biosystems; 2021 Oct; 208():104466. PubMed ID: 34246689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse-Engineering Neural Networks to Characterize Their Cost Functions.
    Isomura T; Friston K
    Neural Comput; 2020 Nov; 32(11):2085-2121. PubMed ID: 32946704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro neural networks minimise variational free energy.
    Isomura T; Friston K
    Sci Rep; 2018 Nov; 8(1):16926. PubMed ID: 30446766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cultured Cortical Neurons Can Perform Blind Source Separation According to the Free-Energy Principle.
    Isomura T; Kotani K; Jimbo Y
    PLoS Comput Biol; 2015 Dec; 11(12):e1004643. PubMed ID: 26690814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The emergence of synchrony in networks of mutually inferring neurons.
    Palacios ER; Isomura T; Parr T; Friston K
    Sci Rep; 2019 Apr; 9(1):6412. PubMed ID: 31040386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural Dynamics under Active Inference: Plausibility and Efficiency of Information Processing.
    Da Costa L; Parr T; Sengupta B; Friston K
    Entropy (Basel); 2021 Apr; 23(4):. PubMed ID: 33921298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.
    Naudé J; Cessac B; Berry H; Delord B
    J Neurosci; 2013 Sep; 33(38):15032-43. PubMed ID: 24048833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural and phenotypic representation under the free-energy principle.
    Ramstead MJD; Hesp C; Tschantz A; Smith R; Constant A; Friston K
    Neurosci Biobehav Rev; 2021 Jan; 120():109-122. PubMed ID: 33271162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Study of dynamic characteristics of scale-free spiking neural networks based on synaptic plasticity].
    Guo L; Lu H; Huang F; Shi H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Dec; 36(6):902-910. PubMed ID: 31875362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the temporal evolution of neuronal connectivity in cultured networks using statistical analysis.
    Napoli A; Xie J; Obeid I
    BMC Neurosci; 2014 Jan; 15():17. PubMed ID: 24443925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Canonical neural networks perform active inference.
    Isomura T; Shimazaki H; Friston KJ
    Commun Biol; 2022 Jan; 5(1):55. PubMed ID: 35031656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The neural coding framework for learning generative models.
    Ororbia A; Kifer D
    Nat Commun; 2022 Apr; 13(1):2064. PubMed ID: 35440589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic causal modeling of evoked responses in EEG and MEG.
    David O; Kiebel SJ; Harrison LM; Mattout J; Kilner JM; Friston KJ
    Neuroimage; 2006 May; 30(4):1255-72. PubMed ID: 16473023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homeostatic scaling of excitability in recurrent neural networks.
    Remme MW; Wadman WJ
    PLoS Comput Biol; 2012; 8(5):e1002494. PubMed ID: 22570604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonance with subthreshold oscillatory drive organizes activity and optimizes learning in neural networks.
    Roach JP; Pidde A; Katz E; Wu J; Ognjanovski N; Aton SJ; Zochowski MR
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):E3017-E3025. PubMed ID: 29545273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A generative model of whole-brain effective connectivity.
    Frässle S; Lomakina EI; Kasper L; Manjaly ZM; Leff A; Pruessmann KP; Buhmann JM; Stephan KE
    Neuroimage; 2018 Oct; 179():505-529. PubMed ID: 29807151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the extent to which homeostatic plasticity learns to compute prediction errors in unstructured neuronal networks.
    Zhu V; Rosenbaum R
    J Comput Neurosci; 2022 Aug; 50(3):357-373. PubMed ID: 35657570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encoding binary neural codes in networks of threshold-linear neurons.
    Curto C; Degeratu A; Itskov V
    Neural Comput; 2013 Nov; 25(11):2858-903. PubMed ID: 23895048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.