These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37550283)

  • 21. Reassessment of carbon emissions from fires and a new estimate of net carbon uptake in Russian forests in 2001-2021.
    Romanov AA; Tamarovskaya AN; Gloor E; Brienen R; Gusev BA; Leonenko EV; Vasiliev AS; Krikunov EE
    Sci Total Environ; 2022 Nov; 846():157322. PubMed ID: 35872207
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resilience and sensitivity of ecosystem carbon stocks to fire-regime change in Alaskan tundra.
    Chen Y; Kelly R; Genet H; Lara MJ; Chipman ML; McGuire AD; Hu FS
    Sci Total Environ; 2022 Feb; 806(Pt 4):151482. PubMed ID: 34742811
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Post-fire forest floor succession in a Central European temperate forest depends on organic matter input from recovering vegetation rather than on pyrogenic carbon input from fire.
    Jílková V; Adámek M; Angst G; Tůmová M; Devetter M
    Sci Total Environ; 2023 Feb; 861():160659. PubMed ID: 36473654
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of fire and CO2 on biogeography and primary production in glacial and modern climates.
    Martin Calvo M; Prentice IC
    New Phytol; 2015 Nov; 208(3):987-94. PubMed ID: 26033154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Greenhouse gas emissions from vegetation fires in Southern Africa.
    Scholes RJ
    Environ Monit Assess; 1995 Jan; 38(2-3):169-79. PubMed ID: 24197943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Herbaceous vegetation responses to experimental fire in savannas and forests depend on biome and climate.
    Gold ZJ; Pellegrini AFA; Refsland TK; Andrioli RJ; Bowles ML; Brockway DG; Burrows N; Franco AC; Hallgren SW; Hobbie SE; Hoffmann WA; Kirkman KP; Reich PB; Savadogo P; Silvério D; Stephan K; Strydom T; Varner JM; Wade DD; Wills A; Staver AC
    Ecol Lett; 2023 Jul; 26(7):1237-1246. PubMed ID: 37161930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Estimating Biomass Burned Areas from Multispectral Dataset Detected by Multiple-Satellite].
    Yu C; Chen LF; Li SS; Tao JH; Su L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Mar; 35(3):739-45. PubMed ID: 26117890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Remote sensing of vegetation conditions after post-fire mulch treatments.
    Vo VD; Kinoshita AM
    J Environ Manage; 2020 Apr; 260():109993. PubMed ID: 32090797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How do forest fires affect soil greenhouse gas emissions in upland boreal forests? A review.
    Ribeiro-Kumara C; Köster E; Aaltonen H; Köster K
    Environ Res; 2020 May; 184():109328. PubMed ID: 32163772
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Greenhouse gas emission in the whole process of forest fire including rescue: a case of forest fire in Beibei District of Chongqing.
    Ji S; Wang Y; He L; Zhang Z; Meng F; Li X; Chen Y; Wang D; Gong Z
    Environ Sci Pollut Res Int; 2023 Nov; 30(52):113105-113117. PubMed ID: 37848780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling long-term changes in tundra carbon balance following wildfire, climate change, and potential nutrient addition.
    Jiang Y; Rastetter EB; Shaver GR; Rocha AV; Zhuang Q; Kwiatkowski BL
    Ecol Appl; 2017 Jan; 27(1):105-117. PubMed ID: 27898193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimates of CO2 from fires in the United States: implications for carbon management.
    Wiedinmyer C; Neff JC
    Carbon Balance Manag; 2007 Nov; 2():10. PubMed ID: 17976229
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct and indirect effects of climate change on projected future fire regimes in the western United States.
    Liu Z; Wimberly MC
    Sci Total Environ; 2016 Jan; 542(Pt A):65-75. PubMed ID: 26519568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fuel treatment effectiveness in the context of landform, vegetation, and large, wind-driven wildfires.
    Prichard SJ; Povak NA; Kennedy MC; Peterson DW
    Ecol Appl; 2020 Jul; 30(5):e02104. PubMed ID: 32086976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wildland-urban interface fire ashes as a major source of incidental nanomaterials.
    Alshehri T; Wang J; Singerling SA; Gigault J; Webster JP; Matiasek SJ; Alpers CN; Baalousha M
    J Hazard Mater; 2023 Feb; 443(Pt B):130311. PubMed ID: 36368066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Landscape development, forest fires, and wilderness management.
    Wright HE
    Science; 1974 Nov; 186(4163):487-95. PubMed ID: 17790369
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The phosphorus-rich signature of fire in the soil-plant system: a global meta-analysis.
    Butler OM; Elser JJ; Lewis T; Mackey B; Chen C
    Ecol Lett; 2018 Mar; 21(3):335-344. PubMed ID: 29314550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water-soluble organic carbon (WSOC) from vegetation fire and its differences from WSOC in natural media: Spectral comparison and self-organizing maps (SOM) classification.
    Zhang H; Ni J; Wei R; Chen W
    Sci Total Environ; 2023 Oct; 895():165180. PubMed ID: 37385508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vegetation-fire feedback reduces projected area burned under climate change.
    Hurteau MD; Liang S; Westerling AL; Wiedinmyer C
    Sci Rep; 2019 Feb; 9(1):2838. PubMed ID: 30808990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fire and fire-adapted vegetation promoted C4 expansion in the late Miocene.
    Scheiter S; Higgins SI; Osborne CP; Bradshaw C; Lunt D; Ripley BS; Taylor LL; Beerling DJ
    New Phytol; 2012 Aug; 195(3):653-666. PubMed ID: 22712748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.