These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Probing Oxidation-Driven Amorphized Surfaces in a Ta(110) Film for Superconducting Qubit. Mun J; Sushko PV; Brass E; Zhou C; Kisslinger K; Qu X; Liu M; Zhu Y ACS Nano; 2024 Jan; 18(1):1126-1136. PubMed ID: 38147003 [TBL] [Abstract][Full Text] [Related]
3. Ultrathin Magnesium-Based Coating as an Efficient Oxygen Barrier for Superconducting Circuit Materials. Zhou C; Mun J; Yao J; Anbalagan AK; Hossain MD; McLellan RA; Li R; Kisslinger K; Li G; Tong X; Head AR; Weiland C; Hulbert SL; Walter AL; Li Q; Zhu Y; Sushko PV; Liu M Adv Mater; 2024 May; 36(18):e2310280. PubMed ID: 38197525 [TBL] [Abstract][Full Text] [Related]
4. Fluxonium: An Alternative Qubit Platform for High-Fidelity Operations. Bao F; Deng H; Ding D; Gao R; Gao X; Huang C; Jiang X; Ku HS; Li Z; Ma X; Ni X; Qin J; Song Z; Sun H; Tang C; Wang T; Wu F; Xia T; Yu W; Zhang F; Zhang G; Zhang X; Zhou J; Zhu X; Shi Y; Chen J; Zhao HH; Deng C Phys Rev Lett; 2022 Jul; 129(1):010502. PubMed ID: 35841558 [TBL] [Abstract][Full Text] [Related]
5. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Place APM; Rodgers LVH; Mundada P; Smitham BM; Fitzpatrick M; Leng Z; Premkumar A; Bryon J; Vrajitoarea A; Sussman S; Cheng G; Madhavan T; Babla HK; Le XH; Gang Y; Jäck B; Gyenis A; Yao N; Cava RJ; de Leon NP; Houck AA Nat Commun; 2021 Mar; 12(1):1779. PubMed ID: 33741989 [TBL] [Abstract][Full Text] [Related]
6. Miniaturizing Transmon Qubits Using van der Waals Materials. Antony A; Gustafsson MV; Ribeill GJ; Ware M; Rajendran A; Govia LCG; Ohki TA; Taniguchi T; Watanabe K; Hone J; Fong KC Nano Lett; 2021 Dec; 21(23):10122-10126. PubMed ID: 34792368 [TBL] [Abstract][Full Text] [Related]
7. Quantum computer-aided design for advanced superconducting qubit: Plasmonium. Liu FM; Wang C; Chen MC; Chen H; Li SW; Shang ZX; Ying C; Wang JW; Huo YH; Peng CZ; Zhu X; Lu CY; Pan JW Sci Bull (Beijing); 2023 Aug; 68(15):1625-1631. PubMed ID: 37453825 [TBL] [Abstract][Full Text] [Related]
8. Advanced CMOS manufacturing of superconducting qubits on 300 mm wafers. Van Damme J; Massar S; Acharya R; Ivanov T; Perez Lozano D; Canvel Y; Demarets M; Vangoidsenhoven D; Hermans Y; Lai JG; Vadiraj AM; Mongillo M; Wan D; De Boeck J; Potočnik A; De Greve K Nature; 2024 Oct; 634(8032):74-79. PubMed ID: 39294381 [TBL] [Abstract][Full Text] [Related]
9. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials. Ivić Z; Lazarides N; Tsironis GP Sci Rep; 2016 Jul; 6():29374. PubMed ID: 27403780 [TBL] [Abstract][Full Text] [Related]
10. Integration of Topological Insulator Josephson Junctions in Superconducting Qubit Circuits. Schmitt TW; Connolly MR; Schleenvoigt M; Liu C; Kennedy O; Chávez-Garcia JM; Jalil AR; Bennemann B; Trellenkamp S; Lentz F; Neumann E; Lindström T; de Graaf SE; Berenschot E; Tas N; Mussler G; Petersson KD; Grützmacher D; Schüffelgen P Nano Lett; 2022 Apr; 22(7):2595-2602. PubMed ID: 35235321 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the annealing behavior of thin Ta films deposited onto Si and SiO2 substrates. Hübner R; Hecker M; Mattern N; Hoffmann V; Wetzig K; Engelmann HJ; Zschech E Anal Bioanal Chem; 2004 Jun; 379(4):568-75. PubMed ID: 15067495 [TBL] [Abstract][Full Text] [Related]
12. Ultralow 1/f Noise in a Heterostructure of Superconducting Epitaxial Cobalt Disilicide Thin Film on Silicon. Chiu SP; Yeh SS; Chiou CJ; Chou YC; Lin JJ; Tsuei CC ACS Nano; 2017 Jan; 11(1):516-525. PubMed ID: 28027434 [TBL] [Abstract][Full Text] [Related]
13. Scalable Method for Eliminating Residual ZZ Interaction between Superconducting Qubits. Ni Z; Li S; Zhang L; Chu J; Niu J; Yan T; Deng X; Hu L; Li J; Zhong Y; Liu S; Yan F; Xu Y; Yu D Phys Rev Lett; 2022 Jul; 129(4):040502. PubMed ID: 35938995 [TBL] [Abstract][Full Text] [Related]
15. Chemical Profiles of the Oxides on Tantalum in State of the Art Superconducting Circuits. McLellan RA; Dutta A; Zhou C; Jia Y; Weiland C; Gui X; Place APM; Crowley KD; Le XH; Madhavan T; Gang Y; Baker L; Head AR; Waluyo I; Li R; Kisslinger K; Hunt A; Jarrige I; Lyon SA; Barbour AM; Cava RJ; Houck AA; Hulbert SL; Liu M; Walter AL; de Leon NP Adv Sci (Weinh); 2023 Jul; 10(21):e2300921. PubMed ID: 37166044 [TBL] [Abstract][Full Text] [Related]
16. Co-sputtered MoRe thin films for carbon nanotube growth-compatible superconducting coplanar resonators. Götz KJ; Blien S; Stiller PL; Vavra O; Mayer T; Huber T; Meier TN; Kronseder M; Strunk Ch; Hüttel AK Nanotechnology; 2016 Apr; 27(13):135202. PubMed ID: 26901846 [TBL] [Abstract][Full Text] [Related]
17. Study on superconducting properties of CeIrIn Kang JH; Kim J; Park TB; Choi WS; Park S; Park T J Phys Condens Matter; 2022 Sep; 34(45):. PubMed ID: 36055248 [TBL] [Abstract][Full Text] [Related]
18. Coherent microwave-photon-mediated coupling between a semiconductor and a superconducting qubit. Scarlino P; van Woerkom DJ; Mendes UC; Koski JV; Landig AJ; Andersen CK; Gasparinetti S; Reichl C; Wegscheider W; Ensslin K; Ihn T; Blais A; Wallraff A Nat Commun; 2019 Jul; 10(1):3011. PubMed ID: 31285437 [TBL] [Abstract][Full Text] [Related]
19. Thin-film synthesis of superconductor-on-insulator A15 vanadium silicide. Zhang W; Bollinger AT; Li R; Kisslinger K; Tong X; Liu M; Black CT Sci Rep; 2021 Jan; 11(1):2358. PubMed ID: 33504921 [TBL] [Abstract][Full Text] [Related]
20. Epitaxial growth and superconducting properties of thin-film PdFe/VN and VN/PdFe bilayers on MgO(001) substrates. Mohammed WM; Yanilkin IV; Gumarov AI; Kiiamov AG; Yusupov RV; Tagirov LR Beilstein J Nanotechnol; 2020; 11():807-813. PubMed ID: 32509494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]