BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37550357)

  • 21. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame.
    Song K; Li L; Li W; Zhu Y; Jiao Z; Lim M; Fang M; Shi F; Wang L; Liu T
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():384-92. PubMed ID: 26117769
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning.
    He FL; Li DW; He J; Liu YY; Ahmad F; Liu YL; Deng X; Ye YJ; Yin DC
    Mater Sci Eng C Mater Biol Appl; 2018 May; 86():18-27. PubMed ID: 29525092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering.
    Chen CH; Shyu VB; Chen JP; Lee MY
    Biofabrication; 2014 Mar; 6(1):015004. PubMed ID: 24429581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biocompatible Hydrogels Based on Food Gums with Tunable Physicochemical Properties as Scaffolds for Cell Culture.
    Qi X; Zhang M; Su T; Pan W; Tong X; Zeng Q; Xiong W; Jiang N; Qian Y; Li Z; He X; Shen L; Zhou Z; Shen J
    J Agric Food Chem; 2020 Mar; 68(12):3770-3778. PubMed ID: 32084311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity.
    Frassica MT; Jones SK; Diaz-Rodriguez P; Hahn MS; Grunlan MA
    Acta Biomater; 2019 Nov; 99():100-109. PubMed ID: 31536841
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanostructured degradable macroporous hydrogel scaffolds with controllable internal morphologies via reactive electrospinning.
    Xu F; Gough I; Dorogin J; Sheardown H; Hoare T
    Acta Biomater; 2020 Mar; 104():135-146. PubMed ID: 31904560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D patterned substrates for bioartificial blood vessels - The effect of hydrogels on aligned cells on a biomaterial surface.
    Zhao X; Irvine SA; Agrawal A; Cao Y; Lim PQ; Tan SY; Venkatraman SS
    Acta Biomater; 2015 Oct; 26():159-168. PubMed ID: 26297885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Difference in suitable mechanical properties of three-dimensional, synthetic scaffolds for self-renewing mouse embryonic stem cells of different genetic backgrounds.
    Lee M; Ahn JI; Ahn JY; Yang WS; Hubbell JA; Lim JM; Lee ST
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2261-2268. PubMed ID: 27459401
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture.
    Liu Y; Chan-Park MB
    Biomaterials; 2010 Feb; 31(6):1158-70. PubMed ID: 19897239
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Boron nitride nanotubes reinforced gelatin hydrogel-based ink for bioprinting and tissue engineering applications.
    Kakarla AB; Kong I; Nguyen TH; Kong C; Irving H
    Biomater Adv; 2022 Oct; 141():213103. PubMed ID: 36084352
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies.
    Ahadian S; Yamada S; Ramón-Azcón J; Estili M; Liang X; Nakajima K; Shiku H; Khademhosseini A; Matsue T
    Acta Biomater; 2016 Feb; 31():134-143. PubMed ID: 26621696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel porous hydrogel based on hybrid gelation for injectable and tough scaffold implantation and tissue engineering applications.
    Hidalgo C; Méndez-Ruette M; Zavala G; Viafara-García S; Novoa J; Díaz-Calderón P; González-Arriagada WA; Cuenca J; Khoury M; Acevedo JP
    Biomed Mater; 2023 May; 18(4):. PubMed ID: 37167997
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel 3D printing PCL/GelMA scaffold containing USPIO for MRI-guided bile duct repair.
    Li H; Yin Y; Xiang Y; Liu H; Guo R
    Biomed Mater; 2020 May; 15(4):045004. PubMed ID: 32092713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Versatile design of hydrogel-based scaffolds with manipulated pore structure for hard-tissue regeneration.
    Kim W; Lee H; Kim Y; Choi CH; Lee D; Hwang H; Kim G
    Biomed Mater; 2016 Sep; 11(5):055002. PubMed ID: 27586518
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Versatile Biosynthetic Hydrogel Platform for Engineering of Tissue Analogues.
    Klotz BJ; Oosterhoff LA; Utomo L; Lim KS; Vallmajo-Martin Q; Clevers H; Woodfield TBF; Rosenberg AJWP; Malda J; Ehrbar M; Spee B; Gawlitta D
    Adv Healthc Mater; 2019 Oct; 8(19):e1900979. PubMed ID: 31402634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patterned and functionalized nanofiber scaffolds in three-dimensional hydrogel constructs enhance neurite outgrowth and directional control.
    McMurtrey RJ
    J Neural Eng; 2014 Dec; 11(6):066009. PubMed ID: 25358624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multilayered polycaprolactone/gelatin fiber-hydrogel composite for tendon tissue engineering.
    Yang G; Lin H; Rothrauff BB; Yu S; Tuan RS
    Acta Biomater; 2016 Apr; 35():68-76. PubMed ID: 26945631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D- Printed Poly(ε-caprolactone) Scaffold Integrated with Cell-laden Chitosan Hydrogels for Bone Tissue Engineering.
    Dong L; Wang SJ; Zhao XR; Zhu YF; Yu JK
    Sci Rep; 2017 Oct; 7(1):13412. PubMed ID: 29042614
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modifying decellularized aortic valve scaffolds with stromal cell-derived factor-1α loaded proteolytically degradable hydrogel for recellularization and remodeling.
    Dai J; Qiao W; Shi J; Liu C; Hu X; Dong N
    Acta Biomater; 2019 Apr; 88():280-292. PubMed ID: 30721783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.