These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 37550374)
21. Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms. Iskandar HM; Casu RE; Fletcher AT; Schmidt S; Xu J; Maclean DJ; Manners JM; Bonnett GD BMC Plant Biol; 2011 Jan; 11():12. PubMed ID: 21226964 [TBL] [Abstract][Full Text] [Related]
22. Molecular mechanism of mulberry response to drought stress revealed by complementary transcriptomic and iTRAQ analyses. Li R; Su X; Zhou R; Zhang Y; Wang T BMC Plant Biol; 2022 Jan; 22(1):36. PubMed ID: 35039015 [TBL] [Abstract][Full Text] [Related]
23. Physiological response and drought resistance evaluation of Gleditsia sinensis seedlings under drought-rehydration state. Liu F; Zhao Y; Wang X; Wang B; Xiao F; He K Sci Rep; 2023 Nov; 13(1):19963. PubMed ID: 37968307 [TBL] [Abstract][Full Text] [Related]
24. Comparative transcriptomic analyses of two sugarcane Li H; Gui Y; Zhu K; Wei J; Zhang R; Yang R; Tang L; Zhou H; Liu X Front Plant Sci; 2023; 14():1243664. PubMed ID: 37885666 [TBL] [Abstract][Full Text] [Related]
25. Physiological and Transcriptional Analysis Reveals the Response Mechanism of Shen S; Yan W; Xie S; Yu J; Yao G; Xia P; Wu Y; Yang H Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233104 [TBL] [Abstract][Full Text] [Related]
26. Drought-induced alterations in photosynthetic, ultrastructural and biochemical traits of contrasting sugarcane genotypes. Zhang YB; Yang SL; Dao JM; Deng J; Shahzad AN; Fan X; Li RD; Quan YJ; Bukhari SAH; Zeng ZH PLoS One; 2020; 15(7):e0235845. PubMed ID: 32639979 [TBL] [Abstract][Full Text] [Related]
27. Characterization of miRNAs and their target genes in He-Ne laser pretreated wheat seedlings exposed to drought stress. Qiu Z; He Y; Zhang Y; Guo J; Wang L Ecotoxicol Environ Saf; 2018 Nov; 164():611-617. PubMed ID: 30153643 [TBL] [Abstract][Full Text] [Related]
28. Effects of drought on the microtranscriptome of field-grown sugarcane plants. Gentile A; Ferreira TH; Mattos RS; Dias LI; Hoshino AA; Carneiro MS; Souza GM; Calsa T; Nogueira RM; Endres L; Menossi M Planta; 2013 Mar; 237(3):783-98. PubMed ID: 23129215 [TBL] [Abstract][Full Text] [Related]
29. Overexpression of sugarcane gene SoSnRK2.1 confers drought tolerance in transgenic tobacco. Phan TT; Sun B; Niu JQ; Tan QL; Li J; Yang LT; Li YR Plant Cell Rep; 2016 Sep; 35(9):1891-905. PubMed ID: 27316630 [TBL] [Abstract][Full Text] [Related]
30. Erianthus arundinaceus HSP70 (EaHSP70) Acts as a Key Regulator in the Formation of Anisotropic Interdigitation in Sugarcane (Saccharum spp. hybrid) in Response to Drought Stress. Augustine SM; Cherian AV; Syamaladevi DP; Subramonian N Plant Cell Physiol; 2015 Dec; 56(12):2368-80. PubMed ID: 26423958 [TBL] [Abstract][Full Text] [Related]
31. Silicon enhances the drought resistance of peach seedlings by regulating hormone, amino acid, and sugar metabolism. Gao H; Yu W; Yang X; Liang J; Sun X; Sun M; Xiao Y; Peng F BMC Plant Biol; 2022 Sep; 22(1):422. PubMed ID: 36045325 [TBL] [Abstract][Full Text] [Related]
32. Glutathione, carbohydrate and other metabolites of Larix olgensis A. Henry reponse to polyethylene glycol-simulated drought stress. Zhang L; Yan S; Zhang S; Yan P; Wang J; Zhang H PLoS One; 2021; 16(11):e0253780. PubMed ID: 34788320 [TBL] [Abstract][Full Text] [Related]
33. Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to drought stress. Zhang C; Zhang L; Zhang S; Zhu S; Wu P; Chen Y; Li M; Jiang H; Wu G BMC Plant Biol; 2015 Jan; 15():17. PubMed ID: 25604012 [TBL] [Abstract][Full Text] [Related]
34. Gene co-expression network analysis to identify critical modules and candidate genes of drought-resistance in wheat. Lv L; Zhang W; Sun L; Zhao A; Zhang Y; Wang L; Liu Y; Li Z; Li H; Chen X PLoS One; 2020; 15(8):e0236186. PubMed ID: 32866164 [TBL] [Abstract][Full Text] [Related]
35. An integrative overview of the molecular and physiological responses of sugarcane under drought conditions. Vital CE; Giordano A; de Almeida Soares E; Rhys Williams TC; Mesquita RO; Vidigal PMP; de Santana Lopes A; Pacheco TG; Rogalski M; de Oliveira Ramos HJ; Loureiro ME Plant Mol Biol; 2017 Aug; 94(6):577-594. PubMed ID: 28409321 [TBL] [Abstract][Full Text] [Related]
36. Sulfur dioxide enhance drought tolerance of wheat seedlings through H Li LH; Yi HL; Xiu-Ping Liu ; Qi HX Ecotoxicol Environ Saf; 2021 Jan; 207():111248. PubMed ID: 32927156 [TBL] [Abstract][Full Text] [Related]
37. A novel dirigent protein gene with highly stem-specific expression from sugarcane, response to drought, salt and oxidative stresses. Jin-Long G; Li-Ping X; Jing-Ping F; Ya-Chun S; Hua-Ying F; You-Xiong Q; Jing-Sheng X Plant Cell Rep; 2012 Oct; 31(10):1801-12. PubMed ID: 22696141 [TBL] [Abstract][Full Text] [Related]
38. Series-temporal transcriptome profiling of cotton reveals the response mechanism of phosphatidylinositol signaling system in the early stage of drought stress. Wang X; Deng Y; Gao L; Kong F; Shen G; Duan B; Wang Z; Dai M; Han Z Genomics; 2022 Sep; 114(5):110465. PubMed ID: 36038061 [TBL] [Abstract][Full Text] [Related]
39. Photosynthetic, antioxidant activities, and osmoregulatory responses in winter wheat differ during the stress and recovery periods under heat, drought, and combined stress. Ru C; Hu X; Chen D; Wang W; Zhen J Plant Sci; 2023 Feb; 327():111557. PubMed ID: 36481364 [TBL] [Abstract][Full Text] [Related]
40. Transcription Factor ERF194 Modulates the Stress-Related Physiology to Enhance Drought Tolerance of Poplar. Huan X; Wang X; Zou S; Zhao K; Han Y; Wang S Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614232 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]