These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 37550482)
1. Comparative dynamics of mixed convection heat transfer under thermal radiation effect with porous medium flow over dual stretched surface. Alam MM; Arshad M; Alharbi FM; Hassan A; Haider Q; Al-Essa LA; Eldin SM; Saeed AM; Galal AM Sci Rep; 2023 Aug; 13(1):12827. PubMed ID: 37550482 [TBL] [Abstract][Full Text] [Related]
2. Comparative study on heat transfer and friction drag in the flow of various hybrid nanofluids effected by aligned magnetic field and nonlinear radiation. Khan MR; Li M; Mao S; Ali R; Khan S Sci Rep; 2021 Feb; 11(1):3691. PubMed ID: 33574375 [TBL] [Abstract][Full Text] [Related]
4. Computation of stagnation coating flow of electro-conductive ternary Williamson hybrid [Formula: see text] nanofluid with a Cattaneo-Christov heat flux model and magnetic induction. Latha KBS; Reddy MG; Tripathi D; Bég OA; Kuharat S; Ahmad H; Ozsahin DU; Askar S Sci Rep; 2023 Jul; 13(1):10972. PubMed ID: 37414803 [TBL] [Abstract][Full Text] [Related]
5. Entropy analysis on EMHD 3D micropolar tri-hybrid nanofluid flow of solar radiative slendering sheet by a machine learning algorithm. Jakeer S; Basha HT; Reddy SRR; Abbas M; Alqahtani MS; Loganathan K; Anand AV Sci Rep; 2023 Nov; 13(1):19168. PubMed ID: 37932305 [TBL] [Abstract][Full Text] [Related]
6. Numerical investigation of heat and mass transfer in three-dimensional MHD nanoliquid flow with inclined magnetization. Galal AM; Alharbi FM; Arshad M; Alam MM; Abdeljawad T; Al-Mdallal QM Sci Rep; 2024 Jan; 14(1):1207. PubMed ID: 38216633 [TBL] [Abstract][Full Text] [Related]
7. Impacts of entropy generation in second-grade fuzzy hybrid nanofluids on exponentially permeable stretching/shrinking surface. Zulqarnain RM; Nadeem M; Siddique I; Mansha A; Ghallab AS; Samar M Sci Rep; 2023 Dec; 13(1):22132. PubMed ID: 38092807 [TBL] [Abstract][Full Text] [Related]
8. Analysis of Soret and Dufour effects on radiative heat transfer in hybrid bioconvective flow of carbon nanotubes. Hussain A; Raiz S; Hassan A; Hassan AM; Karamti H; Bognár G Sci Rep; 2024 May; 14(1):11970. PubMed ID: 38796613 [TBL] [Abstract][Full Text] [Related]
9. Hall current and morphological effects on MHD micropolar non-Newtonian tri-hybrid nanofluid flow between two parallel surfaces. Rauf A; Faisal ; Shah NA; Botmart T Sci Rep; 2022 Oct; 12(1):16608. PubMed ID: 36198713 [TBL] [Abstract][Full Text] [Related]
10. Insight into the dynamics of heat and mass transfer in nanofluid flow with linear/nonlinear mixed convection, thermal radiation, and activation energy effects over the rotating disk. Kanwal S; Shah SAA; Bariq A; Ali B; Ragab AE; Az-Zo'bi EA Sci Rep; 2023 Dec; 13(1):23031. PubMed ID: 38155170 [TBL] [Abstract][Full Text] [Related]
11. Exploration of the effects of Coriolis force and thermal radiation on water-based hybrid nanofluid flow over an exponentially stretching plate. Oke AS; Prasannakumara BC; Mutuku WN; Gowda RJP; Juma BA; Kumar RN; Bada OI Sci Rep; 2022 Dec; 12(1):21733. PubMed ID: 36526629 [TBL] [Abstract][Full Text] [Related]
12. Heat transfer analysis of Maxwell tri-hybridized nanofluid through Riga wedge with fuzzy volume fraction. Zulqarnain RM; Nadeem M; Siddique I; Ahmad H; Askar S; Samar M Sci Rep; 2023 Oct; 13(1):18238. PubMed ID: 37880349 [TBL] [Abstract][Full Text] [Related]
13. Enhanced heat transfer analysis on Ag-Al[Formula: see text]O[Formula: see text]/water hybrid magneto-convective nanoflow. Ragavi M; Poornima T Discov Nano; 2024 Feb; 19(1):31. PubMed ID: 38386148 [TBL] [Abstract][Full Text] [Related]
14. MHD mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition. Raizah Z; Aly AM; Alsedais N; Mansour MA Sci Rep; 2021 Aug; 11(1):17151. PubMed ID: 34433847 [TBL] [Abstract][Full Text] [Related]
15. Effect of inclined magnetic field on radiative heat and mass transfer in chemically reactive hybrid nanofluid flow due to dual stretching. Arshad M; Alharbi FM; Hassan A; Haider Q; Alhushaybari A; Eldin SM; Ahmad Z; Al-Essa LA; Galal AM Sci Rep; 2023 May; 13(1):7828. PubMed ID: 37188712 [TBL] [Abstract][Full Text] [Related]
16. Thermal analysis for [Formula: see text]-sodium alginate magnetized Jeffrey's nanofluid flow past a stretching sheet embedded in a porous medium. Shahzad F; Jamshed W; Nisar KS; Nasir NAAM; Safdar R; Abdel-Aty AH; Yahia IS Sci Rep; 2022 Feb; 12(1):3287. PubMed ID: 35228571 [TBL] [Abstract][Full Text] [Related]
17. Numerical simulations of heat generation, thermal radiation and thermal transport in water-based nanoparticles: OHAM study. Waseem F; Sohail M; Lone SA; Chambashi G Sci Rep; 2023 Sep; 13(1):15650. PubMed ID: 37730737 [TBL] [Abstract][Full Text] [Related]
18. Numerical study of unsteady tangent hyperbolic fuzzy hybrid nanofluid over an exponentially stretching surface. Nadeem M; Siddique I; Riaz Z; Makhdoum BM; Zulqarnain RM; Sallah M Sci Rep; 2023 Sep; 13(1):15551. PubMed ID: 37730700 [TBL] [Abstract][Full Text] [Related]
19. Numerical analysis of a second-grade fuzzy hybrid nanofluid flow and heat transfer over a permeable stretching/shrinking sheet. Nadeem M; Siddique I; Awrejcewicz J; Bilal M Sci Rep; 2022 Jan; 12(1):1631. PubMed ID: 35102223 [TBL] [Abstract][Full Text] [Related]
20. Numerical assessment of heat and mass transportation in [Formula: see text] nanofluids influenced by Soret and Dufour effects. Zubair T; Usman M; Nisar KS; Khan I; Zahran HY; Almaliki AH Sci Rep; 2022 Mar; 12(1):3987. PubMed ID: 35256650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]