These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Correlation between subjective and objective assessment of magnetic resonance (MR) images. Chow LS; Rajagopal H; Paramesran R; Magn Reson Imaging; 2016 Jul; 34(6):820-831. PubMed ID: 26969762 [TBL] [Abstract][Full Text] [Related]
3. Comparison of Objective Image Quality Metrics to Expert Radiologists' Scoring of Diagnostic Quality of MR Images. Mason A; Rioux J; Clarke SE; Costa A; Schmidt M; Keough V; Huynh T; Beyea S IEEE Trans Med Imaging; 2020 Apr; 39(4):1064-1072. PubMed ID: 31535985 [TBL] [Abstract][Full Text] [Related]
4. [CT image quality assessment based on prior information of pre-restored images]. Gao Q; Zhu M; Li D; Bian Z; Ma J Nan Fang Yi Ke Da Xue Xue Bao; 2021 Feb; 41(2):230-237. PubMed ID: 33624596 [TBL] [Abstract][Full Text] [Related]
5. No-reference quality assessment for image-based assessment of economically important tropical woods. Rajagopal H; Mokhtar N; Tengku Mohmed Noor Izam TF; Wan Ahmad WK PLoS One; 2020; 15(5):e0233320. PubMed ID: 32428043 [TBL] [Abstract][Full Text] [Related]
6. An effective no-reference image quality index prediction with a hybrid Artificial Intelligence approach for denoised MRI images. Radhabai PR; Kvn K; Shanmugam A; Imoize AL BMC Med Imaging; 2024 Aug; 24(1):208. PubMed ID: 39134983 [TBL] [Abstract][Full Text] [Related]
7. Texture transformer super-resolution for low-dose computed tomography. Zhou S; Yu L; Jin M Biomed Phys Eng Express; 2022 Nov; 8(6):. PubMed ID: 36301699 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of motion artifacts in brain magnetic resonance images using convolutional neural network-based prediction of full-reference image quality assessment metrics. Sagawa H; Itagaki K; Matsushita T; Miyati T J Med Imaging (Bellingham); 2022 Jan; 9(1):015502. PubMed ID: 35106324 [No Abstract] [Full Text] [Related]
9. STEDNet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT. Zhu L; Han Y; Xi X; Fu H; Tan S; Liu M; Yang S; Liu C; Li L; Yan B Med Phys; 2023 Jul; 50(7):4443-4458. PubMed ID: 36708286 [TBL] [Abstract][Full Text] [Related]
10. Low-dose computed tomography perceptual image quality assessment. Lee W; Wagner F; Galdran A; Shi Y; Xia W; Wang G; Mou X; Ahamed MA; Imran AAZ; Oh JE; Kim K; Baek JT; Lee D; Hong B; Tempelman P; Lyu D; Kuiper A; van Blokland L; Calisto MB; Hsieh S; Han M; Baek J; Maier A; Wang A; Gold GE; Choi JH Med Image Anal; 2025 Jan; 99():103343. PubMed ID: 39265362 [TBL] [Abstract][Full Text] [Related]
11. Artifact-Assisted multi-level and multi-scale feature fusion attention network for low-dose CT denoising. Cui X; Guo Y; Zhang X; Shangguan H; Liu B; Wang A J Xray Sci Technol; 2022; 30(5):875-889. PubMed ID: 35694948 [TBL] [Abstract][Full Text] [Related]
12. FSIM: a feature similarity index for image quality assessment. Zhang L; Zhang L; Mou X; Zhang D IEEE Trans Image Process; 2011 Aug; 20(8):2378-86. PubMed ID: 21292594 [TBL] [Abstract][Full Text] [Related]
13. Super-Resolution Reconstruction of CT Images Based on Multi-scale Information Fused Generative Adversarial Networks. Liu X; Su S; Gu W; Yao T; Shen J; Mo Y Ann Biomed Eng; 2024 Jan; 52(1):57-70. PubMed ID: 38064116 [TBL] [Abstract][Full Text] [Related]
14. A novel denoising method for low-dose CT images based on transformer and CNN. Zhang J; Shangguan Z; Gong W; Cheng Y Comput Biol Med; 2023 Sep; 163():107162. PubMed ID: 37327755 [TBL] [Abstract][Full Text] [Related]
15. Image quality assessment based on the perceived structural similarity index of an image. Yao J; Shen J; Yao C Math Biosci Eng; 2023 Mar; 20(5):9385-9409. PubMed ID: 37161248 [TBL] [Abstract][Full Text] [Related]
16. Assessment of structural similarity in CT using filtered backprojection and iterative reconstruction: a phantom study with 3D printed lung vessels. Joemai RMS; Geleijns J Br J Radiol; 2017 Nov; 90(1079):20160519. PubMed ID: 28830200 [TBL] [Abstract][Full Text] [Related]
17. A novel hybrid generative adversarial network for CT and MRI super-resolution reconstruction. Xiao Y; Chen C; Wang L; Yu J; Fu X; Zou Y; Lin Z; Wang K Phys Med Biol; 2023 Jun; 68(13):. PubMed ID: 37285848 [No Abstract] [Full Text] [Related]
18. A comparison of three image fidelity metrics of different computational principles for JPEG2000 compressed abdomen CT images. Kim KJ; Kim B; Mantiuk R; Richter T; Lee H; Kang HS; Seo J; Lee KH IEEE Trans Med Imaging; 2010 Aug; 29(8):1496-503. PubMed ID: 20529734 [TBL] [Abstract][Full Text] [Related]
19. Low-dose CT reconstruction method based on prior information of normal-dose image. Chen Z; Zhang Q; Zhou C; Zhang M; Yang Y; Liu X; Zheng H; Liang D; Hu Z J Xray Sci Technol; 2020; 28(6):1091-1111. PubMed ID: 33044223 [TBL] [Abstract][Full Text] [Related]
20. Full-Reference Image Quality Assessment with Linear Combination of Genetically Selected Quality Measures. Oszust M PLoS One; 2016; 11(6):e0158333. PubMed ID: 27341493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]