These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37550574)

  • 1. Dynamic matrices with DNA-encoded viscoelasticity for cell and organoid culture.
    Peng YH; Hsiao SK; Gupta K; Ruland A; Auernhammer GK; Maitz MF; Boye S; Lattner J; Gerri C; Honigmann A; Werner C; Krieg E
    Nat Nanotechnol; 2023 Dec; 18(12):1463-1473. PubMed ID: 37550574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelasticity and Adhesion Signaling in Biomaterials Control Human Pluripotent Stem Cell Morphogenesis in 3D Culture.
    Indana D; Agarwal P; Bhutani N; Chaudhuri O
    Adv Mater; 2021 Oct; 33(43):e2101966. PubMed ID: 34499389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomaterials for intestinal organoid technology and personalized disease modeling.
    Hirota A; AlMusawi S; Nateri AS; Ordóñez-Morán P; Imajo M
    Acta Biomater; 2021 Sep; 132():272-287. PubMed ID: 34023456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic dynamic hydrogels promote degradation-independent in vitro organogenesis.
    Chrisnandy A; Blondel D; Rezakhani S; Broguiere N; Lutolf MP
    Nat Mater; 2022 Apr; 21(4):479-487. PubMed ID: 34782747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft, Dynamic Hydrogel Confinement Improves Kidney Organoid Lumen Morphology and Reduces Epithelial-Mesenchymal Transition in Culture.
    Ruiter FAA; Morgan FLC; Roumans N; Schumacher A; Slaats GG; Moroni L; LaPointe VLS; Baker MB
    Adv Sci (Weinh); 2022 Jul; 9(20):e2200543. PubMed ID: 35567354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and differentiation of human induced pluripotent stem cell (hiPSC)-derived kidney organoids using fully synthetic peptide hydrogels.
    Treacy NJ; Clerkin S; Davis JL; Kennedy C; Miller AF; Saiani A; Wychowaniec JK; Brougham DF; Crean J
    Bioact Mater; 2023 Mar; 21():142-156. PubMed ID: 36093324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A thermo-responsive collagen-nanocellulose hydrogel for the growth of intestinal organoids.
    Curvello R; Alves D; Abud HE; Garnier G
    Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112051. PubMed ID: 33947545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The case for applying tissue engineering methodologies to instruct human organoid morphogenesis.
    Marti-Figueroa CR; Ashton RS
    Acta Biomater; 2017 May; 54():35-44. PubMed ID: 28315813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanically and chemically defined hydrogel matrices for patient-derived colorectal tumor organoid culture.
    Ng S; Tan WJ; Pek MMX; Tan MH; Kurisawa M
    Biomaterials; 2019 Oct; 219():119400. PubMed ID: 31398570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo neo-hyaline-cartilage from bovine organoids in viscoelastic hydrogels.
    Crispim JF; Ito K
    Acta Biomater; 2021 Jul; 128():236-249. PubMed ID: 33894352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioactive and chemically defined hydrogels with tunable stiffness guide cerebral organoid formation and modulate multi-omics plasticity in cerebral organoids.
    Isik M; Okesola BO; Eylem CC; Kocak E; Nemutlu E; D'Este M; Mata A; Derkus B
    Acta Biomater; 2023 Nov; 171():223-238. PubMed ID: 37793600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered materials for organoid systems.
    Kratochvil MJ; Seymour AJ; Li TL; Paşca SP; Kuo CJ; Heilshorn SC
    Nat Rev Mater; 2019 Sep; 4(9):606-622. PubMed ID: 33552558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designer matrices for intestinal stem cell and organoid culture.
    Gjorevski N; Sachs N; Manfrin A; Giger S; Bragina ME; Ordóñez-Morán P; Clevers H; Lutolf MP
    Nature; 2016 Nov; 539(7630):560-564. PubMed ID: 27851739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-Functionalized Poly(ethylene glycol) Hydrogels as Scaffolds for Monolayer Organoid Culture.
    Wilson RL; Swaminathan G; Ettayebi K; Bomidi C; Zeng XL; Blutt SE; Estes MK; Grande-Allen KJ
    Tissue Eng Part C Methods; 2021 Jan; 27(1):12-23. PubMed ID: 33334213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Tuning of a Benzene-1,3,5-Tricarboxamide Supramolecular Fibrous Hydrogel Enables Control over Viscoelasticity and Creates Tunable ECM-Mimetic Hydrogels and Bioinks.
    Hafeez S; Aldana AA; Duimel H; Ruiter FAA; Decarli MC; Lapointe V; van Blitterswijk C; Moroni L; Baker MB
    Adv Mater; 2023 Jun; 35(24):e2207053. PubMed ID: 36858040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioengineering Approaches for the Advanced Organoid Research.
    Yi SA; Zhang Y; Rathnam C; Pongkulapa T; Lee KB
    Adv Mater; 2021 Nov; 33(45):e2007949. PubMed ID: 34561899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelastic Notch Signaling Hydrogel Induces Liver Bile Duct Organoid Growth and Morphogenesis.
    Rizwan M; Ling C; Guo C; Liu T; Jiang JX; Bear CE; Ogawa S; Shoichet MS
    Adv Healthc Mater; 2022 Dec; 11(23):e2200880. PubMed ID: 36180392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances of Engineered Hydrogel Organoids within the Stem Cell Field: A Systematic Review.
    Li Z; Yue M; Liu Y; Zhang P; Qing J; Liu H; Zhou Y
    Gels; 2022 Jun; 8(6):. PubMed ID: 35735722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in biomimetic hydrogels for organoid culture.
    Luo L; Liu L; Ding Y; Dong Y; Ma M
    Chem Commun (Camb); 2023 Aug; 59(64):9675-9686. PubMed ID: 37455615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange.
    Brown TE; Carberry BJ; Worrell BT; Dudaryeva OY; McBride MK; Bowman CN; Anseth KS
    Biomaterials; 2018 Sep; 178():496-503. PubMed ID: 29653871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.