BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 37550992)

  • 1. The emergence of new antigen branches of H9N2 avian influenza virus in China due to antigenic drift on hemagglutinin through antibody escape at immunodominant sites.
    Zhang N; Quan K; Chen Z; Hu Q; Nie M; Xu N; Gao R; Wang X; Qin T; Chen S; Peng D; Liu X
    Emerg Microbes Infect; 2023 Dec; 12(2):2246582. PubMed ID: 37550992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The molecular determinants of antigenic drift in a novel avian influenza A (H9N2) variant virus.
    Zheng Y; Guo Y; Li Y; Liang B; Sun X; Li S; Xia H; Ping J
    Virol J; 2022 Feb; 19(1):26. PubMed ID: 35123509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immune Escape Variants of H9N2 Influenza Viruses Containing Deletions at the Hemagglutinin Receptor Binding Site Retain Fitness
    Peacock TP; Benton DJ; James J; Sadeyen JR; Chang P; Sealy JE; Bryant JE; Martin SR; Shelton H; Barclay WS; Iqbal M
    J Virol; 2017 Jul; 91(14):. PubMed ID: 28468875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of a new designated clade 16 with significant antigenic drift in hemagglutinin gene of H9N2 subtype avian influenza virus in eastern China.
    Wang X; Liu K; Guo Y; Pei Y; Chen X; Lu X; Gao R; Chen Y; Gu M; Hu J; Liu X; Hu S; Jiao XA; Liu X; Wang X
    Emerg Microbes Infect; 2023 Dec; 12(2):2249558. PubMed ID: 37585307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antigenic Evolution Characteristics and Immunological Evaluation of H9N2 Avian Influenza Viruses from 1994-2019 in China.
    Liu Q; Zhao L; Guo Y; Zhao Y; Li Y; Chen N; Lu Y; Yu M; Deng L; Ping J
    Viruses; 2022 Mar; 14(4):. PubMed ID: 35458455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HA gene amino acid mutations contribute to antigenic variation and immune escape of H9N2 influenza virus.
    Zhu R; Xu S; Sun W; Li Q; Wang S; Shi H; Liu X
    Vet Res; 2022 Jun; 53(1):43. PubMed ID: 35706014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and Antigenic Characterization of Avian H9N2 Viruses in Southern China.
    Yan W; Cui H; Engelsma M; Beerens N; van Oers MM; de Jong MCM; Li X; Liu Q; Yang J; Teng Q; Li Z
    Microbiol Spectr; 2022 Feb; 10(1):e0082221. PubMed ID: 35019707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of a novel antigenic epitope in the hemagglutinin of the escape mutants of H9N2 avian influenza viruses.
    Zhu Y; Yang D; Ren Q; Yang Y; Liu X; Xu X; Liu W; Chen S; Peng D; Liu X
    Vet Microbiol; 2015 Jul; 178(1-2):144-9. PubMed ID: 25934533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Chinese Hamster Ovary Cell-Based H9 HA Subunit Avian Influenza Vaccine Provides Complete Protection against the H9N2 Virus Challenge in Chickens.
    Zhu S; Nie Z; Che Y; Shu J; Wu S; He Y; Wu Y; Qian H; Feng H; Zhang Q
    Viruses; 2024 Jan; 16(1):. PubMed ID: 38275973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation of D201G near the receptor binding site significantly drives antigenic drift of circulating H9N2 subtype avian influenza virus.
    Xia J; Luo YW; Dong MY; Li YX; Wang AD; Li NL; Shen YX; Li SY; Cui M; Han XF; Yu SC; Li M; Huang Y
    Transbound Emerg Dis; 2022 Nov; 69(6):3485-3493. PubMed ID: 36151953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antigenic evolution of H9N2 chicken influenza viruses isolated in China during 2009-2013 and selection of a candidate vaccine strain with broad cross-reactivity.
    Wei Y; Xu G; Zhang G; Wen C; Anwar F; Wang S; Lemmon G; Wang J; Carter R; Wang M; Sun H; Sun Y; Zhao J; Wu G; Webster RG; Liu J; Pu J
    Vet Microbiol; 2016; 182():1-7. PubMed ID: 26711021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemagglutinin glycosylation pattern-specific effects: implications for the fitness of H9.4.2.5-branched H9N2 avian influenza viruses.
    Sun Y; Zhu Y; Zhang P; Sheng S; Guan Z; Cong Y
    Emerg Microbes Infect; 2024 Dec; 13(1):2364736. PubMed ID: 38847071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and antigenic evolution of H9N2 subtype avian influenza virus in domestic chickens in southwestern China, 2013-2016.
    Xia J; Cui JQ; He X; Liu YY; Yao KC; Cao SJ; Han XF; Huang Y
    PLoS One; 2017; 12(2):e0171564. PubMed ID: 28158271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic Analysis of Hemagglutinin Genes of H9N2 Avian Influenza Viruses Isolated from Chickens in Shandong, China, between 1998 and 2013.
    Zhao Y; Li S; Zhou Y; Song W; Tang Y; Pang Q; Miao Z
    Biomed Res Int; 2015; 2015():267520. PubMed ID: 26609523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotypic evolution and antigenicity of H9N2 influenza viruses in Shanghai, China.
    Ge F; Li X; Ju H; Yang D; Liu J; Qi X; Wang J; Yang X; Qiu Y; Liu P; Zhou J
    Arch Virol; 2016 Jun; 161(6):1437-45. PubMed ID: 26935915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immune Escape Adaptive Mutations in Hemagglutinin Are Responsible for the Antigenic Drift of Eurasian Avian-Like H1N1 Swine Influenza Viruses.
    Xu C; Zhang N; Yang Y; Liang W; Zhang Y; Wang J; Suzuki Y; Wu Y; Chen Y; Yang H; Qiao C; Chen H
    J Virol; 2022 Aug; 96(16):e0097122. PubMed ID: 35916512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of prevalent H9N2 subtype of avian influenza virus during 2019 to 2022 for the development of a control strategy in China.
    Xia J; Li YX; Dong MY; Guo ZW; Luo YW; Li NL; Zhao Y; Li M; Lin Y; Xu J; Cui M; Han XF; Cao SJ; Huang Y
    Poult Sci; 2023 Oct; 102(10):102957. PubMed ID: 37573848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antigenic mapping of an H9N2 avian influenza virus reveals two discrete antigenic sites and a novel mechanism of immune escape.
    Peacock T; Reddy K; James J; Adamiak B; Barclay W; Shelton H; Iqbal M
    Sci Rep; 2016 Jan; 6():18745. PubMed ID: 26738561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino Acid Variation at Hemagglutinin Position 193 Impacts the Properties of H9N2 Avian Influenza Virus.
    Wan Z; Zhao Z; Sang J; Jiang W; Chen J; Tang T; Li Y; Kan Q; Shao H; Zhang J; Xie Q; Li T; Qin A; Ye J
    J Virol; 2023 Feb; 97(2):e0137922. PubMed ID: 36749072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the effects of a two-amino acid flexibility in the Hemagglutinin 220-loop receptor-binding domain on the fitness of Influenza A(H9N2) viruses.
    Sun Y; Cong Y; Yu H; Ding Z; Cong Y
    Emerg Microbes Infect; 2021 Dec; 10(1):822-832. PubMed ID: 33866955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.