These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 37551348)

  • 1. Analysis of technical characteristics of typical lower limb balance movements in Tai Chi: a cross-sectional study based on AnyBody bone muscle modeling.
    Li H; Wang X; Du Z; Shen S
    PeerJ; 2023; 11():e15817. PubMed ID: 37551348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Newly compiled Tai Chi (Bafa Wubu) promotes lower extremity exercise: a preliminary cross sectional study.
    Li H; Peng F; Lyu S; Ji Z; Li X; Liu M
    PeerJ; 2023; 11():e15036. PubMed ID: 36935910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on Two Typical Progressive Motions in Tai Chi (Bafa Wubu) Promoting Lower Extremity Exercise.
    Li H; Peng F; Lyu S; Ji Z; Li Y
    Int J Environ Res Public Health; 2023 Jan; 20(3):. PubMed ID: 36767630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanics analysis of seven Tai Chi movements.
    Law NY; Li JX
    Sports Med Health Sci; 2022 Dec; 4(4):245-252. PubMed ID: 36600972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of the lower limb during two typical Tai Chi movements in the elderly.
    Li JX; Law NY
    Res Sports Med; 2018; 26(1):112-123. PubMed ID: 29067818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromyographic Comparison of Five Lower-Limb Muscles between Single- and Multi-Joint Exercises among Trained Men.
    Stien N; Saeterbakken AH; Andersen V
    J Sports Sci Med; 2021 Mar; 20(1):56-61. PubMed ID: 33707987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on Knee Joint Load and Influencing Factors of Typical Tai Chi Movements.
    Wang C; Yang G; Yang H; Chen C; Zhang H; Wang K; Lu A
    Appl Bionics Biomech; 2022; 2022():6774980. PubMed ID: 35310685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle action pattern and knee extensor strength of older Tai Chi exercisers.
    Wu G
    Med Sport Sci; 2008; 52():30-39. PubMed ID: 18487884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint kinetics during Tai Chi gait and normal walking gait in young and elderly Tai Chi Chuan practitioners.
    Wu G; Millon D
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):787-95. PubMed ID: 18342415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speed effect of selected Tai Chi Chuan movement on leg muscle activity in young and old practitioners.
    Wu G; Ren X
    Clin Biomech (Bristol, Avon); 2009 Jun; 24(5):415-21. PubMed ID: 19356830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-related differences in Tai Chi gait kinematics and leg muscle electromyography: a pilot study.
    Wu G
    Arch Phys Med Rehabil; 2008 Feb; 89(2):351-7. PubMed ID: 18226662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial, temporal and muscle action patterns of Tai Chi gait.
    Wu G; Liu W; Hitt J; Millon D
    J Electromyogr Kinesiol; 2004 Jun; 14(3):343-54. PubMed ID: 15094148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical effects of typical lower limb movements of Chen-style Tai Chi on knee joint.
    Liu H; Gong H; Chen P; Zhang L; Cen H; Fan Y
    Med Biol Eng Comput; 2023 Nov; 61(11):3087-3101. PubMed ID: 37624535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic and electromyographic analysis of the push movement in tai chi.
    Chan SP; Luk TC; Hong Y
    Br J Sports Med; 2003 Aug; 37(4):339-44. PubMed ID: 12893721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional geometry of the human biceps femoris long head measured in vivo using magnetic resonance imaging.
    Schache AG; Ackland DC; Fok L; Koulouris G; Pandy MG
    Clin Biomech (Bristol, Avon); 2013 Mar; 28(3):278-84. PubMed ID: 23312212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effects of Gluteal Strength and Activation on the Relationship Between Femoral Alignment and Functional Valgus Collapse During a Single-Leg Landing.
    Hogg JA; Ackerman T; Nguyen AD; Ross SE; Schmitz RJ; Vanrenterghem J; Shultz SJ
    J Sport Rehabil; 2021 Mar; 30(6):942-951. PubMed ID: 33662925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of joint position on electromyographic and torque generation during maximal voluntary isometric contractions of the hamstrings and gluteus maximus muscles.
    Worrell TW; Karst G; Adamczyk D; Moore R; Stanley C; Steimel B; Steimel S
    J Orthop Sports Phys Ther; 2001 Dec; 31(12):730-40. PubMed ID: 11767248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromyographic analysis of hip and knee muscles during specific exercise movements in females with patellofemoral pain syndrome: An observational study.
    Chen S; Chang WD; Wu JY; Fong YC
    Medicine (Baltimore); 2018 Jul; 97(28):e11424. PubMed ID: 29995792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Knee Flexion Angles on the Joint Force and Muscle Force during Bridging Exercise: A Musculoskeletal Model Simulation.
    Takeshita Y; Kawada M; Miyazaki T; Nakai Y; Araki S; Nakatsuji S; Matsuzawa Y; Nakashima S; Kiyama R
    J Healthc Eng; 2022; 2022():7975827. PubMed ID: 35677781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.