These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37551812)

  • 1. Structural relaxation of water during rapid cooling from ambient temperatures.
    Kringle L; Kay BD; Kimmel GA
    J Chem Phys; 2023 Aug; 159(6):. PubMed ID: 37551812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural relaxation and crystallization in supercooled water from 170 to 260 K.
    Kringle L; Thornley WA; Kay BD; Kimmel GA
    Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33790015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Heterogeneity and Kovacs' Memory Effects in Supercooled Water.
    Kringle L; Kay BD; Kimmel GA
    J Phys Chem B; 2023 May; 127(17):3919-3930. PubMed ID: 37097190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of high-density and low-density amorphous ice on biomolecules at cryogenic temperatures: a case study with polyalanine.
    Eltareb A; Lopez GE; Giovambattista N
    Phys Chem Chem Phys; 2021 Sep; 23(35):19402-19414. PubMed ID: 34494044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible structural transformations in supercooled liquid water from 135 to 245 K.
    Kringle L; Thornley WA; Kay BD; Kimmel GA
    Science; 2020 Sep; 369(6510):1490-1492. PubMed ID: 32943523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum.
    Xu Y; Dibble CJ; Petrik NG; Smith RS; Joly AG; Tonkyn RG; Kay BD; Kimmel GA
    J Chem Phys; 2016 Apr; 144(16):164201. PubMed ID: 27131543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleation and growth of crystalline ices from amorphous ices.
    Tonauer CM; Fidler LR; Giebelmann J; Yamashita K; Loerting T
    J Chem Phys; 2023 Apr; 158(14):141001. PubMed ID: 37061482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal and nonthermal physiochemical processes in nanoscale films of amorphous solid water.
    Smith RS; Petrik NG; Kimmel GA; Kay BD
    Acc Chem Res; 2012 Jan; 45(1):33-42. PubMed ID: 21627126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogeneous Nucleation of Ice in Transiently-Heated, Supercooled Liquid Water Films.
    Xu Y; Petrik NG; Smith RS; Kay BD; Kimmel GA
    J Phys Chem Lett; 2017 Dec; 8(23):5736-5743. PubMed ID: 29125304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid-like relaxation in hyperquenched water at < or = 140 K.
    Kohl I; Bachmann L; Hallbrucker A; Mayer E; Loerting T
    Phys Chem Chem Phys; 2005 Sep; 7(17):3210-20. PubMed ID: 16240034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homogeneous ice nucleation rates and crystallization kinetics in transiently-heated, supercooled water films from 188 K to 230 K.
    Kimmel GA; Xu Y; Brumberg A; Petrik NG; Smith RS; Kay BD
    J Chem Phys; 2019 May; 150(20):204509. PubMed ID: 31153179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental evidence of low-density liquid water upon rapid decompression.
    Lin C; Smith JS; Sinogeikin SV; Shen G
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2010-2015. PubMed ID: 29440411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water's second glass transition.
    Amann-Winkel K; Gainaru C; Handle PH; Seidl M; Nelson H; Böhmer R; Loerting T
    Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17720-5. PubMed ID: 24101518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K.
    Xu Y; Petrik NG; Smith RS; Kay BD; Kimmel GA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):14921-14925. PubMed ID: 27956609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure-annealed high-density amorphous ice made from vitrified water droplets: A systematic calorimetry study on water's second glass transition.
    Bachler J; Giebelmann J; Amann-Winkel K; Loerting T
    J Chem Phys; 2022 Aug; 157(6):064502. PubMed ID: 35963736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connection between liquid and non-crystalline solid phases in water.
    Martelli F; Leoni F; Sciortino F; Russo J
    J Chem Phys; 2020 Sep; 153(10):104503. PubMed ID: 32933306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metastable liquid-liquid transition in a molecular model of water.
    Palmer JC; Martelli F; Liu Y; Car R; Panagiotopoulos AZ; Debenedetti PG
    Nature; 2014 Jun; 510(7505):385-8. PubMed ID: 24943954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of supercooled liquid solutions from nanoscale amorphous solid films of methanol and ethanol.
    Smith RS; Ayotte P; Kay BD
    J Chem Phys; 2007 Dec; 127(24):244705. PubMed ID: 18163693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid-liquid phase separation in supercooled water from ultrafast heating of low-density amorphous ice.
    Amann-Winkel K; Kim KH; Giovambattista N; Ladd-Parada M; Späh A; Perakis F; Pathak H; Yang C; Eklund T; Lane TJ; You S; Jeong S; Lee JH; Eom I; Kim M; Park J; Chun SH; Poole PH; Nilsson A
    Nat Commun; 2023 Jan; 14(1):442. PubMed ID: 36707522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal conductivity of normal and deuterated water, crystalline ice, and amorphous ices.
    Andersson O
    J Chem Phys; 2018 Sep; 149(12):124506. PubMed ID: 30278676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.