These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37552409)

  • 1. A deep learning model for accurately predicting cancer-specific survival in patients with primary bone sarcoma of the extremity: a population-based study.
    Cheng D; Liu D; Li X; Mi Z; Zhang Z; Tao W; Dang J; Zhu D; Fu J; Fan H
    Clin Transl Oncol; 2024 Mar; 26(3):709-719. PubMed ID: 37552409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning models for predicting the survival of patients with hepatocellular carcinoma based on a surveillance, epidemiology, and end results (SEER) database analysis.
    Wang S; Shao M; Fu Y; Zhao R; Xing Y; Zhang L; Xu Y
    Sci Rep; 2024 Jun; 14(1):13232. PubMed ID: 38853169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development of a prediction model based on deep learning for prognosis prediction of gastrointestinal stromal tumor: a SEER-based study.
    Zeng J; Li K; Cao F; Zheng Y
    Sci Rep; 2024 Mar; 14(1):6609. PubMed ID: 38504089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning model for predicting the survival of patients with primary gastrointestinal lymphoma based on the SEER database and a multicentre external validation cohort.
    Wang F; Chen L; Liu L; Jia Y; Li W; Wang L; Zhi J; Liu W; Li W; Li Z
    J Cancer Res Clin Oncol; 2023 Oct; 149(13):12177-12189. PubMed ID: 37428248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and validation of a deep learning-based survival prediction model for pediatric glioma patients: A retrospective study using the SEER database and Chinese data.
    Jiao Y; Ye J; Zhao W; Fan Z; Kou Y; Guo S; Chao M; Fan C; Ji P; Liu J; Zhai Y; Wang Y; Wang N; Wang L
    Comput Biol Med; 2024 Nov; 182():109185. PubMed ID: 39341114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning models for predicting the survival of patients with chondrosarcoma based on a surveillance, epidemiology, and end results analysis.
    Yan L; Gao N; Ai F; Zhao Y; Kang Y; Chen J; Weng Y
    Front Oncol; 2022; 12():967758. PubMed ID: 36072795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep-Learning-Based Model for the Prediction of Cancer-Specific Survival in Patients with Spinal Chordoma.
    Cheng D; Liu D; Li X; Zhang Z; Mi Z; Tao W; Fu J; Fan H
    World Neurosurg; 2023 Oct; 178():e835-e845. PubMed ID: 37586553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning-based individualized survival prediction model for prognosis in osteosarcoma: Data from the SEER database.
    Cao P; Dun Y; Xiang X; Wang D; Cheng W; Yan L; Li H
    Medicine (Baltimore); 2024 Sep; 103(39):e39582. PubMed ID: 39331900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of nomograms for prognostication of patients with primary soft tissue sarcomas of the trunk and extremity: report from the Bone and Soft Tissue Tumor Registry in Japan.
    Sekimizu M; Ogura K; Yasunaga H; Matsui H; Tanaka S; Inagaki K; Kawai A
    BMC Cancer; 2019 Jul; 19(1):657. PubMed ID: 31272407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of survival prediction model for gastric adenocarcinoma patients using deep learning: A SEER-based study.
    Zeng J; Li K; Cao F; Zheng Y
    Front Oncol; 2023; 13():1131859. PubMed ID: 36959782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the survival of patients with pancreatic neuroendocrine neoplasms using deep learning: A study based on Surveillance, Epidemiology, and End Results database.
    Jiang C; Wang K; Yan L; Yao H; Shi H; Lin R
    Cancer Med; 2023 Jun; 12(11):12413-12424. PubMed ID: 37165971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Validation of Novel Nomograms for Predicting Specific Distant Metastatic Sites and Overall Survival of Patients With Soft Tissue Sarcoma.
    Tu Q; Hu C; Zhang H; Kong M; Peng C; Song M; Zhao C; Wang Y; Ma X
    Technol Cancer Res Treat; 2021; 20():1533033821997828. PubMed ID: 33706618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and external validation of two nomograms to predict overall survival and occurrence of distant metastases in adults after surgical resection of localised soft-tissue sarcomas of the extremities: a retrospective analysis.
    Callegaro D; Miceli R; Bonvalot S; Ferguson P; Strauss DC; Levy A; Griffin A; Hayes AJ; Stacchiotti S; Pechoux CL; Smith MJ; Fiore M; Dei Tos AP; Smith HG; Mariani L; Wunder JS; Pollock RE; Casali PG; Gronchi A
    Lancet Oncol; 2016 May; 17(5):671-80. PubMed ID: 27068860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and validation of machine learning models for predicting prognosis and guiding individualized postoperative chemotherapy: A real-world study of distal cholangiocarcinoma.
    Wang D; Pan B; Huang JC; Chen Q; Cui SP; Lang R; Lyu SC
    Front Oncol; 2023; 13():1106029. PubMed ID: 37007095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A SEER-based nomogram accurately predicts prognosis in Ewing's sarcoma.
    Zhan H; Mo F; Zhu M; Xu X; Zhang B; Liu H; Dai M
    Sci Rep; 2021 Nov; 11(1):22723. PubMed ID: 34811459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel staging system based on deep learning for overall survival in patients with esophageal squamous cell carcinoma.
    Zhang H; Jiang X; Yu Q; Yu H; Xu C
    J Cancer Res Clin Oncol; 2023 Sep; 149(11):8935-8944. PubMed ID: 37154930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep-learning-based survival prediction of patients with lower limb melanoma.
    Zhang J; Yu H; Zheng X; Ming WK; Lak YS; Tom KC; Lee A; Huang H; Chen W; Lyu J; Deng L
    Discov Oncol; 2023 Nov; 14(1):218. PubMed ID: 38030951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep-learning-based survival prediction of patients with cutaneous malignant melanoma.
    Yu H; Yang W; Wu S; Xi S; Xia X; Zhao Q; Ming WK; Wu L; Hu Y; Deng L; Lyu J
    Front Med (Lausanne); 2023; 10():1165865. PubMed ID: 37051218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-learning model for predicting the survival of rectal adenocarcinoma patients based on a surveillance, epidemiology, and end results analysis.
    Yu H; Huang T; Feng B; Lyu J
    BMC Cancer; 2022 Feb; 22(1):210. PubMed ID: 35216571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. External Validation and Optimization of the SPRING Model for Prediction of Survival After Surgical Treatment of Bone Metastases of the Extremities.
    Sørensen MS; Gerds TA; Hindsø K; Petersen MM
    Clin Orthop Relat Res; 2018 Aug; 476(8):1591-1599. PubMed ID: 30020148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.