BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37552445)

  • 1. Study on the soluble and insoluble fume and hexavalent chromium emitted from a new covered electrode with micro and nano sized-sodium and potassium titanate-based flux.
    Madhusoodhanan R; Paramashivan SS; Mohan S; Rajeshwari VB
    Environ Sci Pollut Res Int; 2023 Sep; 30(42):95550-95565. PubMed ID: 37552445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace.
    Keane M; Siert A; Stone S; Chen BT
    J Occup Environ Hyg; 2016; 13(1):1-8. PubMed ID: 26267301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of Cr6+ emissions from gas metal arc welding using a silica precursor as a shielding gas additive.
    Topham N; Wang J; Kalivoda M; Huang J; Yu KM; Hsu YM; Wu CY; Oh S; Cho K; Paulson K
    Ann Occup Hyg; 2012 Mar; 56(2):233-41. PubMed ID: 22104317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fume generation and content of total chromium and hexavalent chromium in flux-cored arc welding.
    Yoon CS; Paik NW; Kim JH
    Ann Occup Hyg; 2003 Nov; 47(8):671-80. PubMed ID: 14602674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of exposure to hexavalent chromium concentration in shielded metal arc welding fumes by nano-coating of electrodes.
    Sivapirakasam SP; Mohan S; Santhosh Kumar MC; Thomas Paul A; Surianarayanan M
    Int J Occup Environ Health; 2017 Apr; 23(2):128-142. PubMed ID: 29460694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of occupational exposure to hexavalent chromium and ozone in tubular wire arc-welding processes by replacement of potassium by lithium or by addition of zinc.
    Dennis JH; French MJ; Hewitt PJ; Mortazavi SB; Redding CA
    Ann Occup Hyg; 2002 Jan; 46(1):33-42. PubMed ID: 12005130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Profiling mild steel welding processes to reduce fume emissions and costs in the workplace.
    Keane MJ; Siert A; Chen BT; Stone SG
    Ann Occup Hyg; 2014 May; 58(4):403-12. PubMed ID: 24515891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Particulate Fume and Oxides Emission from Stainless Steel Plasma Cutting.
    Wang J; Hoang T; Floyd EL; Regens JL
    Ann Work Expo Health; 2017 Apr; 61(3):311-320. PubMed ID: 28355418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Assessment of occupational exposure of welders based on determination of fumes and their components produced during stainless steel welding].
    Stanisławska M; Janasik B; Trzcinka-Ochocka M
    Med Pr; 2011; 62(4):359-68. PubMed ID: 21995105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The particle size distribution, density, and specific surface area of welding fumes from SMAW and GMAW mild and stainless steel consumables.
    Hewett P
    Am Ind Hyg Assoc J; 1995 Feb; 56(2):128-35. PubMed ID: 7856513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relation between various chromium compounds and some other elements in fumes from manual metal arc stainless steel welding.
    Matczak W; Chmielnicka J
    Br J Ind Med; 1993 Mar; 50(3):244-51. PubMed ID: 8457491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some difficulties in the assessment of electric arc welding fume.
    Hewitt PJ; Gray CN
    Am Ind Hyg Assoc J; 1983 Oct; 44(10):727-32. PubMed ID: 6650393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The three dimensional distribution of chromium and nickel alloy welding fumes.
    Mori T; Matsuda A; Akashi S; Ogata M; Takeoka K; Yoshinaka M
    Acta Med Okayama; 1991 Aug; 45(4):233-40. PubMed ID: 1962531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Field Study on the Respiratory Deposition of the Nano-Sized Fraction of Mild and Stainless Steel Welding Fume Metals.
    Cena LG; Chisholm WP; Keane MJ; Chen BT
    J Occup Environ Hyg; 2015; 12(10):721-8. PubMed ID: 25985454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxic and genotoxic action of electric-arc welding fumes on cultured mammalian cells.
    Baker RS; Arlauskas A; Tandon RK; Crisp PT; Ellis J
    J Appl Toxicol; 1986 Oct; 6(5):357-62. PubMed ID: 3772012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Determination of fumes and their elements from flux cored arc welding].
    Matczak W; Przybylska-Stanisławska M
    Med Pr; 2004; 55(6):481-9. PubMed ID: 15887517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of welding fume solubility on lung macrophage viability and function in vitro.
    Antonini JM; Lawryk NJ; Murthy GG; Brain JD
    J Toxicol Environ Health A; 1999 Nov; 58(6):343-63. PubMed ID: 10580758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The simulation of the emission of iron fumes caused by shielded metal arc welding using a computational fluid dynamics method.
    Paridokht F; Soury S; Karimi Zeverdegani S
    Toxicol Ind Health; 2023 Jan; 39(1):36-48. PubMed ID: 36464906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders.
    Graczyk H; Lewinski N; Zhao J; Concha-Lozano N; Riediker M
    Ann Occup Hyg; 2016 Mar; 60(2):205-19. PubMed ID: 26464505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods for determining soluble and insoluble Cr III and Cr VI compounds in welding fumes.
    Matczak W; Chmielnicka J
    Pol J Occup Med; 1989; 2(4):376-88. PubMed ID: 2489439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.