These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Association between preoperative hematologic markers and aggressive behavior in meningiomas. Guidry BS; Chotai S; Tang AR; Le CH; Grisham CJ; McDermott JR; Kelly PD; Morone PJ; Thompson RC; Chambless LB Clin Neurol Neurosurg; 2023 Mar; 226():107629. PubMed ID: 36822137 [TBL] [Abstract][Full Text] [Related]
24. A comprehensive correlation of the KI-67 proliferation index to patient´s, imaging and tumor features and its value in predicting long-term course of patients with newly diagnosed intracranial meningiomas. Wagle PR; Loeschner D; Rosahl S; Brodhun M; Gerlach R Neurosurg Rev; 2024 May; 47(1):241. PubMed ID: 38806958 [TBL] [Abstract][Full Text] [Related]
25. Predicting meningioma grades and pathologic marker expression via deep learning. Chen J; Xue Y; Ren L; Lv K; Du P; Cheng H; Sun S; Hua L; Xie Q; Wu R; Gong Y Eur Radiol; 2024 May; 34(5):2997-3008. PubMed ID: 37853176 [TBL] [Abstract][Full Text] [Related]
26. Radiomic Features of the Edema Region May Contribute to Grading Meningiomas With Peritumoral Edema. Guo Z; Tian Z; Shi F; Xu P; Zhang J; Ling C; Zeng Q J Magn Reson Imaging; 2023 Jul; 58(1):301-310. PubMed ID: 36259547 [TBL] [Abstract][Full Text] [Related]
27. Presurgical detection of brain invasion status in meningiomas based on first-order histogram based texture analysis of contrast enhanced imaging. Kandemirli SG; Chopra S; Priya S; Ward C; Locke T; Soni N; Srivastava S; Jones K; Bathla G Clin Neurol Neurosurg; 2020 Nov; 198():106205. PubMed ID: 32932028 [TBL] [Abstract][Full Text] [Related]
28. Value of MRI Radiomics Based on Enhanced T1WI Images in Prediction of Meningiomas Grade. Chu H; Lin X; He J; Pang P; Fan B; Lei P; Guo D; Ye C Acad Radiol; 2021 May; 28(5):687-693. PubMed ID: 32418785 [TBL] [Abstract][Full Text] [Related]
29. A Machine Learning Model Based on Unsupervised Clustering Multihabitat to Predict the Pathological Grading of Meningiomas. Wang X; Li J; Sun J; Liu W; Cai L; Zhao P; Yang Z; Lv H; Wang Z Biomed Res Int; 2022; 2022():8955227. PubMed ID: 36132071 [TBL] [Abstract][Full Text] [Related]
30. Multi-parameter MRI radiomic features may contribute to predict progression-free survival in patients with WHO grade II meningiomas. Zeng Q; Tian Z; Dong F; Shi F; Xu P; Zhang J; Ling C; Guo Z Front Oncol; 2024; 14():1246730. PubMed ID: 39007097 [TBL] [Abstract][Full Text] [Related]
31. Analysis of the results of recurrent intracranial meningiomas treated with re-radiosurgery. Kim M; Lee DH; Kim Rn HJ; Cho YH; Kim JH; Kwon DH Clin Neurol Neurosurg; 2017 Feb; 153():93-101. PubMed ID: 28081463 [TBL] [Abstract][Full Text] [Related]
32. Ki-67 proliferative index predicts clinical outcome in patients with atypical or anaplastic meningioma. Bruna J; Brell M; Ferrer I; Gimenez-Bonafe P; Tortosa A Neuropathology; 2007 Apr; 27(2):114-20. PubMed ID: 17494511 [TBL] [Abstract][Full Text] [Related]
33. Can amide proton transfer-weighted imaging differentiate tumor grade and predict Ki-67 proliferation status of meningioma? Yu H; Wen X; Wu P; Chen Y; Zou T; Wang X; Jiang S; Zhou J; Wen Z Eur Radiol; 2019 Oct; 29(10):5298-5306. PubMed ID: 30887206 [TBL] [Abstract][Full Text] [Related]
34. Clinical Features, Treatment, and Prognostic Factors of 56 Intracranial and Intraspinal Clear Cell Meningiomas. Tao X; Dong J; Hou Z; Hao S; Zhang J; Wu Z; Liu B World Neurosurg; 2018 Mar; 111():e880-e887. PubMed ID: 29325940 [TBL] [Abstract][Full Text] [Related]
35. Meningiomas: Preoperative predictive histopathological grading based on radiomics of MRI. Han Y; Wang T; Wu P; Zhang H; Chen H; Yang C Magn Reson Imaging; 2021 Apr; 77():36-43. PubMed ID: 33220449 [TBL] [Abstract][Full Text] [Related]
36. Value of KI-67/MIB-1 labeling index and simpson grading system to predict the recurrence of who grade I intracranial meningiomas compared to who grade II. Prat-Acín R; Guarín-Corredor MJ; Galeano-Senabre I; Ayuso-Sacido A; Vera-Sempere F J Clin Neurosci; 2021 Apr; 86():32-37. PubMed ID: 33775343 [TBL] [Abstract][Full Text] [Related]
37. Assessing preoperative risk of STR in skull meningiomas using MR radiomics and machine learning. Musigmann M; Akkurt BH; Krähling H; Brokinkel B; Henssen DJHA; Sartoretti T; Nacul NG; Stummer W; Heindel W; Mannil M Sci Rep; 2022 Aug; 12(1):14043. PubMed ID: 35982218 [TBL] [Abstract][Full Text] [Related]
38. Predicting peritumoral edema development after gamma knife radiosurgery of meningiomas using machine learning methods: a multicenter study. Li X; Lu Y; Liu L; Wang D; Zhao Y; Mei N; Geng D; Ma X; Zheng W; Duan S; Wu PY; Wen H; Tan Y; Sun X; Sun S; Li Z; Yu T; Yin B Eur Radiol; 2023 Dec; 33(12):8912-8924. PubMed ID: 37498381 [TBL] [Abstract][Full Text] [Related]
39. The role of diffusion tensor imaging and dynamic susceptibility perfusion MRI in the evaluation of meningioma grade and subtype. Zikou A; Alexiou GA; Goussia A; Kosta P; Xydis V; Voulgaris S; Kyritsis AP; Argyropoulou MI Clin Neurol Neurosurg; 2016 Jul; 146():109-15. PubMed ID: 27208870 [TBL] [Abstract][Full Text] [Related]
40. A retrospective analysis of survival and prognostic factors after stereotactic radiosurgery for aggressive meningiomas. Ferraro DJ; Funk RK; Blackett JW; Ju MR; DeWees TA; Chicoine MR; Dowling JL; Rich KM; Drzymala RE; Zoberi I; Simpson JR; Jaboin JJ Radiat Oncol; 2014 Jan; 9():38. PubMed ID: 24467972 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]