These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37552668)

  • 1. Genome-wide analysis highlights genetic admixture in exotic germplasm resources of Eucalyptus and unexpected ancestral genomic composition of interspecific hybrids.
    de Oliveira DA; da Silva PHM; Novaes E; Grattapaglia D
    PLoS One; 2023; 18(8):e0289536. PubMed ID: 37552668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the accuracy of genomic prediction of growth and wood traits in two Eucalyptus species and their F
    Tan B; Grattapaglia D; Martins GS; Ferreira KZ; Sundberg B; Ingvarsson PK
    BMC Plant Biol; 2017 Jun; 17(1):110. PubMed ID: 28662679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput SNP genotyping in the highly heterozygous genome of Eucalyptus: assay success, polymorphism and transferability across species.
    Grattapaglia D; Silva-Junior OB; Kirst M; de Lima BM; Faria DA; Pappas GJ
    BMC Plant Biol; 2011 Apr; 11():65. PubMed ID: 21492434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative genetic parameters for growth and wood properties in Eucalyptus "urograndis" hybrid using near-infrared phenotyping and genome-wide SNP-based relationships.
    Marco de Lima B; Cappa EP; Silva-Junior OB; Garcia C; Mansfield SD; Grattapaglia D
    PLoS One; 2019; 14(6):e0218747. PubMed ID: 31233563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic prediction in contrast to a genome-wide association study in explaining heritable variation of complex growth traits in breeding populations of Eucalyptus.
    Müller BSF; Neves LG; de Almeida Filho JE; Resende MFR; Muñoz PR; Dos Santos PET; Filho EP; Kirst M; Grattapaglia D
    BMC Genomics; 2017 Jul; 18(1):524. PubMed ID: 28693539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A flexible multi-species genome-wide 60K SNP chip developed from pooled resequencing of 240 Eucalyptus tree genomes across 12 species.
    Silva-Junior OB; Faria DA; Grattapaglia D
    New Phytol; 2015 Jun; 206(4):1527-40. PubMed ID: 25684350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic characterization of a core set of the USDA-NPGS Ethiopian sorghum germplasm collection: implications for germplasm conservation, evaluation, and utilization in crop improvement.
    Cuevas HE; Rosa-Valentin G; Hayes CM; Rooney WL; Hoffmann L
    BMC Genomics; 2017 Jan; 18(1):108. PubMed ID: 28125967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear species-diagnostic SNP markers mined from 454 amplicon sequencing reveal admixture genomic structure of modern citrus varieties.
    Curk F; Ancillo G; Ollitrault F; Perrier X; Jacquemoud-Collet JP; Garcia-Lor A; Navarro L; Ollitrault P
    PLoS One; 2015; 10(5):e0125628. PubMed ID: 25973611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterns of Reproductive Isolation in Eucalyptus-A Phylogenetic Perspective.
    Larcombe MJ; Holland B; Steane DA; Jones RC; Nicolle D; Vaillancourt RE; Potts BM
    Mol Biol Evol; 2015 Jul; 32(7):1833-46. PubMed ID: 25777461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eucalyptus applied genomics: from gene sequences to breeding tools.
    Grattapaglia D; Kirst M
    New Phytol; 2008; 179(4):911-929. PubMed ID: 18537893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomics assisted ancestry deconvolution in grape.
    Sawler J; Reisch B; Aradhya MK; Prins B; Zhong GY; Schwaninger H; Simon C; Buckler E; Myles S
    PLoS One; 2013; 8(11):e80791. PubMed ID: 24244717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Landscape and taxon age are associated with differing patterns of hybridization in two Eucalyptus (Myrtaceae) subgenera.
    Robins TP; Binks RM; Byrne M; Hopper SD
    Ann Bot; 2021 Jan; 127(1):49-62. PubMed ID: 32914170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Landscape drivers of genomic diversity and divergence in woodland Eucalyptus.
    Murray KD; Janes JK; Jones A; Bothwell HM; Andrew RL; Borevitz JO
    Mol Ecol; 2019 Dec; 28(24):5232-5247. PubMed ID: 31647597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus.
    Brondani RP; Williams ER; Brondani C; Grattapaglia D
    BMC Plant Biol; 2006 Sep; 6():20. PubMed ID: 16995939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic evidence of introgression and adaptation in a model subtropical tree species, Eucalyptus grandis.
    Mostert-O'Neill MM; Reynolds SM; Acosta JJ; Lee DJ; Borevitz JO; Myburg AA
    Mol Ecol; 2021 Feb; 30(3):625-638. PubMed ID: 32881106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide patterns of recombination, linkage disequilibrium and nucleotide diversity from pooled resequencing and single nucleotide polymorphism genotyping unlock the evolutionary history of Eucalyptus grandis.
    Silva-Junior OB; Grattapaglia D
    New Phytol; 2015 Nov; 208(3):830-45. PubMed ID: 26079595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genome of Eucalyptus grandis.
    Myburg AA; Grattapaglia D; Tuskan GA; Hellsten U; Hayes RD; Grimwood J; Jenkins J; Lindquist E; Tice H; Bauer D; Goodstein DM; Dubchak I; Poliakov A; Mizrachi E; Kullan AR; Hussey SG; Pinard D; van der Merwe K; Singh P; van Jaarsveld I; Silva-Junior OB; Togawa RC; Pappas MR; Faria DA; Sansaloni CP; Petroli CD; Yang X; Ranjan P; Tschaplinski TJ; Ye CY; Li T; Sterck L; Vanneste K; Murat F; Soler M; Clemente HS; Saidi N; Cassan-Wang H; Dunand C; Hefer CA; Bornberg-Bauer E; Kersting AR; Vining K; Amarasinghe V; Ranik M; Naithani S; Elser J; Boyd AE; Liston A; Spatafora JW; Dharmwardhana P; Raja R; Sullivan C; Romanel E; Alves-Ferreira M; Külheim C; Foley W; Carocha V; Paiva J; Kudrna D; Brommonschenkel SH; Pasquali G; Byrne M; Rigault P; Tibbits J; Spokevicius A; Jones RC; Steane DA; Vaillancourt RE; Potts BM; Joubert F; Barry K; Pappas GJ; Strauss SH; Jaiswal P; Grima-Pettenati J; Salse J; Van de Peer Y; Rokhsar DS; Schmutz J
    Nature; 2014 Jun; 510(7505):356-62. PubMed ID: 24919147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating genome-wide association mapping of additive and dominance genetic effects to improve genomic prediction accuracy in Eucalyptus.
    Tan B; Ingvarsson PK
    Plant Genome; 2022 Jun; 15(2):e20208. PubMed ID: 35441826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping.
    Steane DA; Nicolle D; Sansaloni CP; Petroli CD; Carling J; Kilian A; Myburg AA; Grattapaglia D; Vaillancourt RE
    Mol Phylogenet Evol; 2011 Apr; 59(1):206-24. PubMed ID: 21310251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomics of Eucalyptus and Corymbia reveals low rates of genome structural rearrangement.
    Butler JB; Vaillancourt RE; Potts BM; Lee DJ; King GJ; Baten A; Shepherd M; Freeman JS
    BMC Genomics; 2017 May; 18(1):397. PubMed ID: 28532390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.