These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37552700)

  • 1. Kinetic Growth of Multicomponent Microcompartment Shells.
    Waltmann C; Kennedy NW; Mills CE; Roth EW; Ikonomova SP; Tullman-Ercek D; Olvera de la Cruz M
    ACS Nano; 2023 Aug; 17(16):15751-15762. PubMed ID: 37552700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the encapsulated cargo in microcompartment assembly.
    Mohajerani F; Hagan MF
    PLoS Comput Biol; 2018 Jul; 14(7):e1006351. PubMed ID: 30063715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamics Simulations of Selective Metabolite Transport across the Propanediol Bacterial Microcompartment Shell.
    Park J; Chun S; Bobik TA; Houk KN; Yeates TO
    J Phys Chem B; 2017 Aug; 121(34):8149-8154. PubMed ID: 28829618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking the Salmonella enterica 1,2-Propanediol Utilization Bacterial Microcompartment Shell to the Enzymatic Core via the Shell Protein PduB.
    Kennedy NW; Mills CE; Abrahamson CH; Archer AG; Shirman S; Jewett MC; Mangan NM; Tullman-Ercek D
    J Bacteriol; 2022 Sep; 204(9):e0057621. PubMed ID: 35575582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme-cargo encapsulation peptides bind between tessellating tiles of the bacterial microcompartment shell.
    Gu S; Bradley-Clarke J; Rose RS; Warren MJ; Pickersgill RW
    J Biol Chem; 2024 Jun; 300(6):107357. PubMed ID: 38735476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The N Terminus of the PduB Protein Binds the Protein Shell of the Pdu Microcompartment to Its Enzymatic Core.
    Lehman BP; Chowdhury C; Bobik TA
    J Bacteriol; 2017 Apr; 199(8):. PubMed ID: 28138097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo design of signal sequences to localize cargo to the 1,2-propanediol utilization microcompartment.
    Jakobson CM; Slininger Lee MF; Tullman-Ercek D
    Protein Sci; 2017 May; 26(5):1086-1092. PubMed ID: 28241402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microcompartment assembly around multicomponent fluid cargoes.
    Tsidilkovski L; Mohajerani F; Hagan MF
    J Chem Phys; 2022 Jun; 156(24):245104. PubMed ID: 35778087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Salmonella enterica, Ethanolamine Utilization Is Repressed by 1,2-Propanediol To Prevent Detrimental Mixing of Components of Two Different Bacterial Microcompartments.
    Sturms R; Streauslin NA; Cheng S; Bobik TA
    J Bacteriol; 2015 Jul; 197(14):2412-21. PubMed ID: 25962913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for Improved Encapsulated Pathway Behavior in a Bacterial Microcompartment through Shell Protein Engineering.
    Slininger Lee MF; Jakobson CM; Tullman-Ercek D
    ACS Synth Biol; 2017 Oct; 6(10):1880-1891. PubMed ID: 28585808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Wrappers of the 1,2-Propanediol Utilization Bacterial Microcompartments.
    Bari NK; Kumar G; Sinha S
    Adv Exp Med Biol; 2018; 1112():333-344. PubMed ID: 30637708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the Catalytic Activity of Subcellular Nanoreactors.
    Jakobson CM; Chen Y; Slininger MF; Valdivia E; Kim EY; Tullman-Ercek D
    J Mol Biol; 2016 Jul; 428(15):2989-96. PubMed ID: 27427532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective molecular transport through the protein shell of a bacterial microcompartment organelle.
    Chowdhury C; Chun S; Pang A; Sawaya MR; Sinha S; Yeates TO; Bobik TA
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):2990-5. PubMed ID: 25713376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering the PduT shell protein to modify the permeability of the 1,2-propanediol microcompartment of
    Chowdhury C; Bobik TA
    Microbiology (Reading); 2019 Dec; 165(12):1355-1364. PubMed ID: 31674899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust nonequilibrium pathways to microcompartment assembly.
    Rotskoff GM; Geissler PL
    Proc Natl Acad Sci U S A; 2018 Jun; 115(25):6341-6346. PubMed ID: 29866851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of Scaffold-Mediated Microcompartment Assembly and Size Control.
    Mohajerani F; Sayer E; Neil C; Inlow K; Hagan MF
    ACS Nano; 2021 Mar; 15(3):4197-4212. PubMed ID: 33683101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A systems-level model reveals that 1,2-Propanediol utilization microcompartments enhance pathway flux through intermediate sequestration.
    Jakobson CM; Tullman-Ercek D; Slininger MF; Mangan NM
    PLoS Comput Biol; 2017 May; 13(5):e1005525. PubMed ID: 28475631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembling Shell Proteins PduA and PduJ have Essential and Redundant Roles in Bacterial Microcompartment Assembly.
    Kennedy NW; Ikonomova SP; Slininger Lee M; Raeder HW; Tullman-Ercek D
    J Mol Biol; 2021 Jan; 433(2):166721. PubMed ID: 33227310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterologous Assembly of Pleomorphic Bacterial Microcompartment Shell Architectures Spanning the Nano- to Microscale.
    Ferlez BH; Kirst H; Greber BJ; Nogales E; Sutter M; Kerfeld CA
    Adv Mater; 2023 Jun; 35(23):e2212065. PubMed ID: 36932732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cargo encapsulation in bacterial microcompartments: Methods and analysis.
    Nichols TM; Kennedy NW; Tullman-Ercek D
    Methods Enzymol; 2019; 617():155-186. PubMed ID: 30784401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.