These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 37552700)

  • 21. Effect of bio-engineering on size, shape, composition and rigidity of bacterial microcompartments.
    Mayer MJ; Juodeikis R; Brown IR; Frank S; Palmer DJ; Deery E; Beal DM; Xue WF; Warren MJ
    Sci Rep; 2016 Nov; 6():36899. PubMed ID: 27845382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using comparative genomics to uncover new kinds of protein-based metabolic organelles in bacteria.
    Jorda J; Lopez D; Wheatley NM; Yeates TO
    Protein Sci; 2013 Feb; 22(2):179-95. PubMed ID: 23188745
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The shells of BMC-type microcompartment organelles in bacteria.
    Yeates TO; Jorda J; Bobik TA
    J Mol Microbiol Biotechnol; 2013; 23(4-5):290-9. PubMed ID: 23920492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of a Glycyl Radical Enzyme Bacterial Microcompartment Pathway in
    Schindel HS; Karty JA; McKinlay JB; Bauer CE
    J Bacteriol; 2019 Mar; 201(5):. PubMed ID: 30510145
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic analysis of the protein shell of the microcompartments involved in coenzyme B12-dependent 1,2-propanediol degradation by Salmonella.
    Cheng S; Sinha S; Fan C; Liu Y; Bobik TA
    J Bacteriol; 2011 Mar; 193(6):1385-92. PubMed ID: 21239588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial microcompartment organelles: protein shell structure and evolution.
    Yeates TO; Crowley CS; Tanaka S
    Annu Rev Biophys; 2010; 39():185-205. PubMed ID: 20192762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural characterization of hexameric shell proteins from two types of choline-utilization bacterial microcompartments.
    Ochoa JM; Mijares O; Acosta AA; Escoto X; Leon-Rivera N; Marshall JD; Sawaya MR; Yeates TO
    Acta Crystallogr F Struct Biol Commun; 2021 Sep; 77(Pt 9):275-285. PubMed ID: 34473104
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent structural insights into bacterial microcompartment shells.
    Ochoa JM; Yeates TO
    Curr Opin Microbiol; 2021 Aug; 62():51-60. PubMed ID: 34058518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A designed bacterial microcompartment shell with tunable composition and precision cargo loading.
    Ferlez B; Sutter M; Kerfeld CA
    Metab Eng; 2019 Jul; 54():286-291. PubMed ID: 31075444
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Localization of proteins to the 1,2-propanediol utilization microcompartment by non-native signal sequences is mediated by a common hydrophobic motif.
    Jakobson CM; Kim EY; Slininger MF; Chien A; Tullman-Ercek D
    J Biol Chem; 2015 Oct; 290(40):24519-33. PubMed ID: 26283792
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assembly of robust bacterial microcompartment shells using building blocks from an organelle of unknown function.
    Lassila JK; Bernstein SL; Kinney JN; Axen SD; Kerfeld CA
    J Mol Biol; 2014 May; 426(11):2217-28. PubMed ID: 24631000
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biogenesis of a bacterial metabolosome for propanediol utilization.
    Yang M; Wenner N; Dykes GF; Li Y; Zhu X; Sun Y; Huang F; Hinton JCD; Liu LN
    Nat Commun; 2022 May; 13(1):2920. PubMed ID: 35614058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural insight into the mechanisms of transport across the Salmonella enterica Pdu microcompartment shell.
    Crowley CS; Cascio D; Sawaya MR; Kopstein JS; Bobik TA; Yeates TO
    J Biol Chem; 2010 Nov; 285(48):37838-46. PubMed ID: 20870711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational and Experimental Approaches to Controlling Bacterial Microcompartment Assembly.
    Li Y; Kennedy NW; Li S; Mills CE; Tullman-Ercek D; Olvera de la Cruz M
    ACS Cent Sci; 2021 Apr; 7(4):658-670. PubMed ID: 34056096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assembly principles and structure of a 6.5-MDa bacterial microcompartment shell.
    Sutter M; Greber B; Aussignargues C; Kerfeld CA
    Science; 2017 Jun; 356(6344):1293-1297. PubMed ID: 28642439
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of metabolosome encapsulation peptides on enzyme activity, coaggregation, incorporation, and bacterial microcompartment formation.
    Juodeikis R; Lee MJ; Mayer M; Mantell J; Brown IR; Verkade P; Woolfson DN; Prentice MB; Frank S; Warren MJ
    Microbiologyopen; 2020 May; 9(5):e1010. PubMed ID: 32053746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of time, temperature, and pH on the stability of PDU bacterial microcompartments.
    Kim EY; Slininger MF; Tullman-Ercek D
    Protein Sci; 2014 Oct; 23(10):1434-41. PubMed ID: 25053115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The protein shells of bacterial microcompartment organelles.
    Yeates TO; Thompson MC; Bobik TA
    Curr Opin Struct Biol; 2011 Apr; 21(2):223-31. PubMed ID: 21315581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Many-molecule encapsulation by an icosahedral shell.
    Perlmutter JD; Mohajerani F; Hagan MF
    Elife; 2016 May; 5():. PubMed ID: 27166515
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of a Minimal α-Carboxysome-Derived Shell and Its Utility in Enzyme Stabilization.
    Tan YQ; Ali S; Xue B; Teo WZ; Ling LH; Go MK; Lv H; Robinson RC; Narita A; Yew WS
    Biomacromolecules; 2021 Oct; 22(10):4095-4109. PubMed ID: 34384019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.