These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37552859)

  • 1. Nuclear Transport of the Molecular Drug via Nanocarrier-Based Nonendocytic Cellular Uptake.
    Sarkar AK; Shaw S; Arora H; Seth P; Jana NR
    ACS Appl Mater Interfaces; 2023 Aug; 15(33):39176-39185. PubMed ID: 37552859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemically Designed Nanoscale Materials for Controlling Cellular Processes.
    Debnath K; Pal S; Jana NR
    Acc Chem Res; 2021 Jul; 54(14):2916-2927. PubMed ID: 34232016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonendocytic Cell Delivery of Quantum Dot Using Arginine-Terminated Gold Nanoparticles.
    Pal S; Jana NR
    J Phys Chem B; 2020 Dec; 124(52):11827-11834. PubMed ID: 33337153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arginine-Terminated Nanoparticles of <10 nm Size for Direct Membrane Penetration and Protein Delivery for Straight Access to Cytosol and Nucleus.
    Panja P; Jana NR
    J Phys Chem Lett; 2020 Mar; 11(6):2363-2368. PubMed ID: 32130014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantitative study of the intracellular fate of pH-responsive doxorubicin-polypeptide nanoparticles.
    Wang J; Bhattacharyya J; Mastria E; Chilkoti A
    J Control Release; 2017 Aug; 260():100-110. PubMed ID: 28576641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Mitochondria Targeting by Arginine-Terminated, Sub-10 nm Nanoprobe via Direct Cell Membrane Penetration.
    Ray R; Ghosh S; Panja P; Jana NR
    ACS Appl Bio Mater; 2023 Jun; 6(6):2338-2344. PubMed ID: 37196150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient nuclear drug translocation and improved drug efficacy mediated by acidity-responsive boronate-linked dextran/cholesterol nanoassembly.
    Zhu JY; Lei Q; Yang B; Jia HZ; Qiu WX; Wang X; Zeng X; Zhuo RX; Feng J; Zhang XZ
    Biomaterials; 2015 Jun; 52():281-90. PubMed ID: 25818434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How successful is nuclear targeting by nanocarriers?
    Tammam SN; Azzazy HME; Lamprecht A
    J Control Release; 2016 May; 229():140-153. PubMed ID: 26995759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular uptake, intracellular distribution and degradation of Her2-targeting silk nanospheres.
    Florczak A; Mackiewicz A; Dams-Kozlowska H
    Int J Nanomedicine; 2019; 14():6855-6865. PubMed ID: 32021156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical Evaluation of Different Lysosomal Labeling Methods Used to Analyze RNA Nanocarrier Trafficking in Cells.
    Iqbal S; Luo B; Melamed JR; Day ES
    Bioconjug Chem; 2021 Oct; 32(10):2245-2256. PubMed ID: 34543006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphate-Dependent Colloidal Stability Controls Nonendocytic Cell Delivery of Arginine-Terminated Nanoparticles.
    Ray R; Ghosh S; Jana NR
    J Phys Chem B; 2021 Aug; 125(32):9186-9196. PubMed ID: 34374554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocarriers escaping from hyperacidified endo/lysosomes in cancer cells allow tumor-targeted intracellular delivery of antibodies to therapeutically inhibit c-MYC.
    Chen P; Yang W; Hong T; Miyazaki T; Dirisala A; Kataoka K; Cabral H
    Biomaterials; 2022 Sep; 288():121748. PubMed ID: 36038419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arginine-Terminated, Chemically Designed Nanoparticle for Direct Cell Translocation.
    Ghosh S; Panja P; Dalal C; Jana NR
    ACS Appl Bio Mater; 2019 Jan; 2(1):339-348. PubMed ID: 35016357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical and computational investigations of nanoparticle-biomembrane interactions in cellular delivery.
    Ding HM; Ma YQ
    Small; 2015 Mar; 11(9-10):1055-71. PubMed ID: 25387905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of intracellular trafficking, cytosolic bioavailability, and target manipulation of an antibody delivery platform.
    Lv W; Champion JA
    Nanomedicine; 2021 Feb; 32():102315. PubMed ID: 33065253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Nucleus-Targeted Drug Delivery Using Cascade pH
    Cao Z; Li D; Wang J; Xiong M; Yang X
    Small; 2019 Sep; 15(36):e1902022. PubMed ID: 31318147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shell-crosslinked hybrid nanoparticles for direct cytosolic delivery for tumor therapy.
    He W; Jin Z; Lv Y; Cao H; Yao J; Zhou J; Yin L
    Int J Pharm; 2015 Jan; 478(2):762-72. PubMed ID: 25529435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multistimuli-Responsive Amphiphilic Poly(ester-urethane) Nanoassemblies Based on l-Tyrosine for Intracellular Drug Delivery to Cancer Cells.
    Aluri R; Saxena S; Joshi DC; Jayakannan M
    Biomacromolecules; 2018 Jun; 19(6):2166-2181. PubMed ID: 29664622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein Delivery into the Cell Cytosol using Non-Viral Nanocarriers.
    Lee YW; Luther DC; Kretzmann JA; Burden A; Jeon T; Zhai S; Rotello VM
    Theranostics; 2019; 9(11):3280-3292. PubMed ID: 31244954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination-targeting to multiple endothelial cell adhesion molecules modulates binding, endocytosis, and in vivo biodistribution of drug nanocarriers and their therapeutic cargoes.
    Papademetriou I; Tsinas Z; Hsu J; Muro S
    J Control Release; 2014 Aug; 188():87-98. PubMed ID: 24933603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.