These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37552921)

  • 21. Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept.
    Ceseracciu E; Sawacha Z; Cobelli C
    PLoS One; 2014; 9(3):e87640. PubMed ID: 24595273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Markerless gait analysis through a single camera and computer vision.
    Wang H; Su B; Lu L; Jung S; Qing L; Xie Z; Xu X
    J Biomech; 2024 Mar; 165():112027. PubMed ID: 38430608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Markerless motion capture provides accurate predictions of ground reaction forces across a range of movement tasks.
    Lichtwark GA; Schuster RW; Kelly LA; Trost SG; Bialkowski A
    J Biomech; 2024 Mar; 166():112051. PubMed ID: 38503062
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Validation of a Commercially Available Markerless Motion-Capture System for Trunk and Lower Extremity Kinematics During a Jump-Landing Assessment.
    Mauntel TC; Cameron KL; Pietrosimone B; Marshall SW; Hackney AC; Padua DA
    J Athl Train; 2021 Feb; 56(2):177-190. PubMed ID: 33480993
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clothing condition does not affect meaningful clinical interpretation in markerless motion capture.
    Keller VT; Outerleys JB; Kanko RM; Laende EK; Deluzio KJ
    J Biomech; 2022 Aug; 141():111182. PubMed ID: 35749889
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inter-session repeatability of markerless motion capture gait kinematics.
    Kanko RM; Laende E; Selbie WS; Deluzio KJ
    J Biomech; 2021 May; 121():110422. PubMed ID: 33873117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison of three-dimensional kinematics between markerless and marker-based motion capture in overground gait.
    Ripic Z; Nienhuis M; Signorile JF; Best TM; Jacobs KA; Eltoukhy M
    J Biomech; 2023 Oct; 159():111793. PubMed ID: 37725886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of markerless and marker-based motion capture of gait kinematics in individuals with cerebral palsy and chronic stroke: A case study series.
    Steffensen EA; Magalhães F; Knarr BA; Kingston DC
    Res Sq; 2023 Feb; ():. PubMed ID: 36798184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Artificial Intelligence-Assisted motion capture for medical applications: a comparative study between markerless and passive marker motion capture.
    Takeda I; Yamada A; Onodera H
    Comput Methods Biomech Biomed Engin; 2021 Jun; 24(8):864-873. PubMed ID: 33290107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Healthcare applications of single camera markerless motion capture: a scoping review.
    Scott B; Seyres M; Philp F; Chadwick EK; Blana D
    PeerJ; 2022; 10():e13517. PubMed ID: 35642200
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using a Markerless Motion Capture System to Identify Preinjury Differences in Functional Assessments.
    Laupattarakasem P; Cook JL; Stannard JP; Smith PA; Blecha KM; Guess TM; Sharp RL; Leary E
    J Knee Surg; 2024 Jul; 37(8):570-576. PubMed ID: 37586406
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The measurement of in vivo joint angles during a squat using a single camera markerless motion capture system as compared to a marker based system.
    Schmitz A; Ye M; Boggess G; Shapiro R; Yang R; Noehren B
    Gait Posture; 2015 Feb; 41(2):694-8. PubMed ID: 25708833
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics-Part 2: Accuracy.
    Pagnon D; Domalain M; Reveret L
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The applicability of markerless motion capture for clinical gait analysis in children with cerebral palsy.
    Wishaupt K; Schallig W; van Dorst MH; Buizer AI; van der Krogt MM
    Sci Rep; 2024 May; 14(1):11910. PubMed ID: 38789587
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the reliability of single-camera markerless systems for overground gait monitoring.
    Boldo M; Di Marco R; Martini E; Nardon M; Bertucco M; Bombieri N
    Comput Biol Med; 2024 Mar; 171():108101. PubMed ID: 38340440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Absolute Reliability of Gait Parameters Acquired With Markerless Motion Capture in Living Domains.
    Riazati S; McGuirk TE; Perry ES; Sihanath WB; Patten C
    Front Hum Neurosci; 2022; 16():867474. PubMed ID: 35782037
    [No Abstract]   [Full Text] [Related]  

  • 37. Concurrent validity of smartphone-based markerless motion capturing to quantify lower-limb joint kinematics in healthy and pathological gait.
    Horsak B; Eichmann A; Lauer K; Prock K; Krondorfer P; Siragy T; Dumphart B
    J Biomech; 2023 Oct; 159():111801. PubMed ID: 37738945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The accuracy of several pose estimation methods for 3D joint centre localisation.
    Needham L; Evans M; Cosker DP; Wade L; McGuigan PM; Bilzon JL; Colyer SL
    Sci Rep; 2021 Oct; 11(1):20673. PubMed ID: 34667207
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Markerless motion capture: What clinician-scientists need to know right now.
    Ito N; Sigurðsson HB; Seymore KD; Arhos EK; Buchanan TS; Snyder-Mackler L; Silbernagel KG
    JSAMS Plus; 2022 Oct; 1():. PubMed ID: 36438718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Applications of markerless motion capture in gait recognition.
    Sandau M
    Dan Med J; 2016 Mar; 63(3):. PubMed ID: 26931198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.