These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37553314)

  • 21. [Development of acute kidney injury prognostic model for critically ill patients based on MIMIC-III database].
    Li M; Yang H; Yang W; Wei B; Zhang Y; Xie R; Chu P
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2021 Aug; 33(8):949-954. PubMed ID: 34590562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Internal and external validation of machine learning-assisted prediction models for mechanical ventilation-associated severe acute kidney injury.
    Huang S; Teng Y; Du J; Zhou X; Duan F; Feng C
    Aust Crit Care; 2023 Jul; 36(4):604-612. PubMed ID: 35842332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Comparison of machine learning method and logistic regression model in prediction of acute kidney injury in severely burned patients].
    Tang CQ; Li JQ; Xu DY; Liu XB; Hou WJ; Lyu KY; Xiao SC; Xia ZF
    Zhonghua Shao Shang Za Zhi; 2018 Jun; 34(6):343-348. PubMed ID: 29961290
    [No Abstract]   [Full Text] [Related]  

  • 24. Prediction model of in-hospital mortality in intensive care unit patients with heart failure: machine learning-based, retrospective analysis of the MIMIC-III database.
    Li F; Xin H; Zhang J; Fu M; Zhou J; Lian Z
    BMJ Open; 2021 Jul; 11(7):e044779. PubMed ID: 34301649
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A time-aware attention model for prediction of acute kidney injury after pediatric cardiac surgery.
    Zeng X; Shi S; Sun Y; Feng Y; Tan L; Lin R; Li J; Duan H; Shu Q; Li H
    J Am Med Inform Assoc; 2022 Dec; 30(1):94-102. PubMed ID: 36287639
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting acute kidney injury risk in acute myocardial infarction patients: An artificial intelligence model using medical information mart for intensive care databases.
    Cai D; Xiao T; Zou A; Mao L; Chi B; Wang Y; Wang Q; Ji Y; Sun L
    Front Cardiovasc Med; 2022; 9():964894. PubMed ID: 36158815
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Case mix, outcome and activity for patients with severe acute kidney injury during the first 24 hours after admission to an adult, general critical care unit: application of predictive models from a secondary analysis of the ICNARC Case Mix Programme database.
    Kolhe NV; Stevens PE; Crowe AV; Lipkin GW; Harrison DA
    Crit Care; 2008; 12 Suppl 1(Suppl 1):S2. PubMed ID: 19105800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Urinary neutrophil gelatinase-associated lipocalin identifies critically ill young children with acute kidney injury following intensive care admission: a prospective cohort study.
    Zwiers AJ; de Wildt SN; van Rosmalen J; de Rijke YB; Buijs EA; Tibboel D; Cransberg K
    Crit Care; 2015 Apr; 19(1):181. PubMed ID: 25895828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated Continuous Acute Kidney Injury Prediction and Surveillance: A Random Forest Model.
    Chiofolo C; Chbat N; Ghosh E; Eshelman L; Kashani K
    Mayo Clin Proc; 2019 May; 94(5):783-792. PubMed ID: 31054606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MACHINE LEARNING MODELS FOR PREDICTING ACUTE KIDNEY INJURY IN PATIENTS WITH SEPSIS-ASSOCIATED ACUTE RESPIRATORY DISTRESS SYNDROME.
    Zhou Y; Feng J; Mei S; Zhong H; Tang R; Xing S; Gao Y; Xu Q; He Z
    Shock; 2023 Mar; 59(3):352-359. PubMed ID: 36625493
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of patients' clinical features at intensive care unit admission on performance of cell cycle arrest biomarkers in predicting acute kidney injury.
    Yang B; Xie Y; Garzotto F; Ankawi G; Passannante A; Brendolan A; Bonato R; Carta M; Giavarina D; Vidal E; Gregori D; Ronco C
    Clin Chem Lab Med; 2020 Sep; 59(2):333-342. PubMed ID: 32986608
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and validation of clinical prediction models for acute kidney injury recovery at hospital discharge in critically ill adults.
    Huang CY; Güiza F; De Vlieger G; Wouters P; Gunst J; Casaer M; Vanhorebeek I; Derese I; Van den Berghe G; Meyfroidt G
    J Clin Monit Comput; 2023 Feb; 37(1):113-125. PubMed ID: 35532860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting the risk factors of diabetic ketoacidosis-associated acute kidney injury: A machine learning approach using XGBoost.
    Fan T; Wang J; Li L; Kang J; Wang W; Zhang C
    Front Public Health; 2023; 11():1087297. PubMed ID: 37089510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Explainable ensemble machine learning model for prediction of 28-day mortality risk in patients with sepsis-associated acute kidney injury.
    Yang J; Peng H; Luo Y; Zhu T; Xie L
    Front Med (Lausanne); 2023; 10():1165129. PubMed ID: 37275353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases.
    Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S
    Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Early Prediction of Acute Kidney Injury in Critical Care Setting Using Clinical Notes and Structured Multivariate Physiological Measurements.
    Sun M; Baron J; Dighe A; Szolovits P; Wunderink RG; Isakova T; Luo Y
    Stud Health Technol Inform; 2019 Aug; 264():368-372. PubMed ID: 31437947
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A prospective study of acute kidney injury in the intensive care unit: development and validation of a risk prediction model.
    Wang Q; Tang Y; Zhou J; Qin W
    J Transl Med; 2019 Nov; 17(1):359. PubMed ID: 31690326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting acute kidney injury in critically ill patients using comorbid conditions utilizing machine learning.
    Shawwa K; Ghosh E; Lanius S; Schwager E; Eshelman L; Kashani KB
    Clin Kidney J; 2021 May; 14(5):1428-1435. PubMed ID: 33959271
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RIFLE-based data collection/management system applied to a prospective cohort multicenter Italian study on the epidemiology of acute kidney injury in the intensive care unit.
    Garzotto F; Piccinni P; Cruz D; Gramaticopolo S; Dal Santo M; Aneloni G; Kim JC; Rocco M; Alessandri E; Giunta F; Michetti V; Iannuzzi M; Belluomo Anello C; Brienza N; Carlini M; Pelaia P; Gabbanelli V; Ronco C;
    Blood Purif; 2011; 31(1-3):159-71. PubMed ID: 21228585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Application of a risk stratification-based model for prediction of acute kidney injury combined with hemoperfusion in patients with sepsis: a prospective, observational, pilot study].
    Feng F; Chen Y; Chen W; Yang H; Yang W; Du J; Li M
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2020 Jul; 32(7):814-818. PubMed ID: 32788015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.