BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 37553326)

  • 21. Picoinjection enables digital detection of RNA with droplet rt-PCR.
    Eastburn DJ; Sciambi A; Abate AR
    PLoS One; 2013; 8(4):e62961. PubMed ID: 23658657
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Label-free, high-throughput, electrical detection of cells in droplets.
    Kemna EW; Segerink LI; Wolbers F; Vermes I; van den Berg A
    Analyst; 2013 Aug; 138(16):4585-92. PubMed ID: 23748871
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnetic Microtweezers for High-Throughput Bioseparation in Sub-Nanoliter Droplets.
    Dumas S; Alexandre L; Richerd M; Serra M; Descroix S
    Methods Mol Biol; 2024; 2804():163-176. PubMed ID: 38753147
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Droplet-based microfluidic analysis and screening of single plant cells.
    Yu Z; Boehm CR; Hibberd JM; Abell C; Haseloff J; Burgess SJ; Reyna-Llorens I
    PLoS One; 2018; 13(5):e0196810. PubMed ID: 29723275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A microfluidic robot for rare cell sorting based on machine vision identification and multi-step sorting strategy.
    Wang Y; Wang DF; Wang HF; Wang JW; Pan JZ; Guo XG; Fang Q
    Talanta; 2021 May; 226():122136. PubMed ID: 33676690
    [TBL] [Abstract][Full Text] [Related]  

  • 26. iSort enables automated complex microfluidic droplet sorting in an effort to democratize technology.
    Panwar J; Utharala R; Fennelly L; Frenzel D; Merten CA
    Cell Rep Methods; 2023 May; 3(5):100478. PubMed ID: 37323570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Droplet microfluidics for high-throughput analysis of cells and particles.
    Zagnoni M; Cooper JM
    Methods Cell Biol; 2011; 102():25-48. PubMed ID: 21704834
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dissecting Cell-Type Composition and Activity-Dependent Transcriptional State in Mammalian Brains by Massively Parallel Single-Nucleus RNA-Seq.
    Hu P; Fabyanic E; Kwon DY; Tang S; Zhou Z; Wu H
    Mol Cell; 2017 Dec; 68(5):1006-1015.e7. PubMed ID: 29220646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High throughput single cell counting in droplet-based microfluidics.
    Lu H; Caen O; Vrignon J; Zonta E; El Harrak Z; Nizard P; Baret JC; Taly V
    Sci Rep; 2017 May; 7(1):1366. PubMed ID: 28465615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data.
    Lun ATL; Riesenfeld S; Andrews T; Dao TP; Gomes T; ; Marioni JC
    Genome Biol; 2019 Mar; 20(1):63. PubMed ID: 30902100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving single-cell transcriptome sequencing efficiency with a microfluidic phase-switch device.
    Zhang B; Xu H; Huang Y; Shu W; Feng H; Cai J; Zhong JF; Chen Y
    Analyst; 2019 Dec; 144(24):7185-7191. PubMed ID: 31688860
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a facile droplet-based single-cell isolation platform for cultivation and genomic analysis in microorganisms.
    Zhang Q; Wang T; Zhou Q; Zhang P; Gong Y; Gou H; Xu J; Ma B
    Sci Rep; 2017 Jan; 7():41192. PubMed ID: 28112223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analytical detection techniques for droplet microfluidics--a review.
    Zhu Y; Fang Q
    Anal Chim Acta; 2013 Jul; 787():24-35. PubMed ID: 23830418
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-Cell RNA Sequencing with Drop-Seq.
    Bageritz J; Raddi G
    Methods Mol Biol; 2019; 1979():73-85. PubMed ID: 31028633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Droplet size influences division of mammalian cell factories in droplet microfluidic cultivation.
    Periyannan Rajeswari PK; Joensson HN; Andersson-Svahn H
    Electrophoresis; 2017 Jan; 38(2):305-310. PubMed ID: 27535608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enrichment of rare events using a multi-parameter high throughput microfluidic droplet sorter.
    Hung ST; Mukherjee S; Jimenez R
    Lab Chip; 2020 Feb; 20(4):834-843. PubMed ID: 31974539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A droplet-merging platform for comparative functional analysis of m1 and m2 macrophages in response to e. coli-induced stimuli.
    Hondroulis E; Movila A; Sabhachandani P; Sarkar S; Cohen N; Kawai T; Konry T
    Biotechnol Bioeng; 2017 Mar; 114(3):705-709. PubMed ID: 27723125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Droplet Microfluidic and Magnetic Particles Platform for Cancer Typing.
    Ferraro D; Champ J; Teste B; Serra M; Malaquin L; Descroix S; de Cremoux P; Viovy JL
    Methods Mol Biol; 2017; 1547():113-121. PubMed ID: 28044291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.
    Schoeman RM; Kemna EW; Wolbers F; van den Berg A
    Electrophoresis; 2014 Feb; 35(2-3):385-92. PubMed ID: 23856757
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrahigh-throughput screening of industrial enzyme-producing strains by droplet-based microfluidic system.
    Yuan H; Tu R; Tong X; Lin Y; Zhang Y; Wang Q
    J Ind Microbiol Biotechnol; 2022 May; 49(3):. PubMed ID: 35259275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.