These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37553412)

  • 21. Manipulating abnormal synergistic coupling of joint torques through force applications at the Hand: A Simulation-Based study.
    Augenstein TE; Krishnan C
    J Biomech; 2022 Jan; 131():110936. PubMed ID: 34979357
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduced Kinematic Redundancy and Motor Equivalence During Whole-Body Reaching in Individuals With Chronic Stroke.
    Tomita Y; Mullick AA; Levin MF
    Neurorehabil Neural Repair; 2018 Feb; 32(2):175-186. PubMed ID: 29554848
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a Method to Quantify Abnormal Kinetic and Kinematic Coupling Patterns during Functional Movements in the Paretic Arm and Hand of Individuals with Pediatric Hemiplegia.
    Hill NM; Dewald JPA
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2280-2283. PubMed ID: 30440861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dance-based exergaming for upper extremity rehabilitation and reducing fall-risk in community-dwelling individuals with chronic stroke. A preliminary study.
    Subramaniam S; Bhatt T
    Top Stroke Rehabil; 2019 Dec; 26(8):565-575. PubMed ID: 31576774
    [No Abstract]   [Full Text] [Related]  

  • 25. How many trials are needed in kinematic analysis of reach-to-grasp?-A study of the drinking task in persons with stroke and non-disabled controls.
    Frykberg GE; Grip H; Alt Murphy M
    J Neuroeng Rehabil; 2021 Jun; 18(1):101. PubMed ID: 34130716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measuring Arm and Hand Joint Kinematics to Estimate Impairment During a Functional Reach and Grasp Task after Stroke.
    Khanna P; Oppenheim T; Tu-Chan A; Abrams G; Ganguly K
    Neurorehabil Neural Repair; 2023 Jun; 37(6):409-417. PubMed ID: 37300318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synergy-Based FES for Post-Stroke Rehabilitation of Upper-Limb Motor Functions.
    Niu CM; Bao Y; Zhuang C; Li S; Wang T; Cui L; Xie Q; Lan N
    IEEE Trans Neural Syst Rehabil Eng; 2019 Feb; 27(2):256-264. PubMed ID: 30763238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impaired posture, movement preparation, and execution during both paretic and nonparetic reaching following stroke.
    Yang CL; Creath RA; Magder L; Rogers MW; McCombe Waller S
    J Neurophysiol; 2019 Apr; 121(4):1465-1477. PubMed ID: 30785824
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pattern of improvement in upper limb pointing task kinematics after a 3-month training program with robotic assistance in stroke.
    Pila O; Duret C; Laborne FX; Gracies JM; Bayle N; Hutin E
    J Neuroeng Rehabil; 2017 Oct; 14(1):105. PubMed ID: 29029633
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Myoelectric interface training enables targeted reduction in abnormal muscle co-activation.
    Seo G; Kishta A; Mugler E; Slutzky MW; Roh J
    J Neuroeng Rehabil; 2022 Jul; 19(1):67. PubMed ID: 35778757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Smoothness metric during reach-to-grasp after stroke: part 2. longitudinal association with motor impairment.
    Saes M; Mohamed Refai MI; van Kordelaar J; Scheltinga BL; van Beijnum BF; Bussmann JBJ; Buurke JH; Veltink PH; Meskers CGM; van Wegen EEH; Kwakkel G
    J Neuroeng Rehabil; 2021 Sep; 18(1):144. PubMed ID: 34560898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of stroke-related upper limb motor impairments across various upper limb activities by use of kinematic core set measures.
    Schwarz A; Bhagubai MMC; Nies SHG; Held JPO; Veltink PH; Buurke JH; Luft AR
    J Neuroeng Rehabil; 2022 Jan; 19(1):2. PubMed ID: 35016694
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinematic Synergy of Multi-DoF Movement in Upper Limb and Its Application for Rehabilitation Exoskeleton Motion Planning.
    Tang S; Chen L; Barsotti M; Hu L; Li Y; Wu X; Bai L; Frisoli A; Hou W
    Front Neurorobot; 2019; 13():99. PubMed ID: 31849635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinect System.
    Adomavičienė A; Daunoravičienė K; Kubilius R; Varžaitytė L; Raistenskis J
    Medicina (Kaunas); 2019 Apr; 55(4):. PubMed ID: 30970655
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inter-Joint Coordination Deficits Revealed in the Decomposition of Endpoint Jerk During Goal-Directed Arm Movement After Stroke.
    Laczko J; Scheidt RA; Simo LS; Piovesan D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):798-810. PubMed ID: 28092567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mapping upper-limb motor performance after stroke - a novel method with utility for individualized motor training.
    Rosenthal O; Wing AM; Wyatt JL; Punt D; Miall RC
    J Neuroeng Rehabil; 2017 Dec; 14(1):127. PubMed ID: 29208020
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke.
    Frisoli A; Procopio C; Chisari C; Creatini I; Bonfiglio L; Bergamasco M; Rossi B; Carboncini MC
    J Neuroeng Rehabil; 2012 Jun; 9():36. PubMed ID: 22681653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recovery of kinematic arm function in well-performing people with subacute stroke: a longitudinal cohort study.
    Thrane G; Alt Murphy M; Sunnerhagen KS
    J Neuroeng Rehabil; 2018 Jul; 15(1):67. PubMed ID: 30021596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical validation of kinematic assessments of post-stroke upper limb movements with a multi-joint arm exoskeleton.
    Grimm F; Kraugmann J; Naros G; Gharabaghi A
    J Neuroeng Rehabil; 2021 Jun; 18(1):92. PubMed ID: 34078400
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Motor-Equivalent Intersegmental Coordination Is Impaired in Chronic Stroke.
    Subramanian SK; Baniña MC; Sambasivan K; Haentjens K; Finestone HM; Sveistrup H; Levin MF
    Neurorehabil Neural Repair; 2020 Mar; 34(3):210-221. PubMed ID: 31976815
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.