BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 37553650)

  • 1. Real-time forecasting of COVID-19 spread according to protective behavior and vaccination: autoregressive integrated moving average models.
    Cheng C; Jiang WM; Fan B; Cheng YC; Hsu YT; Wu HY; Chang HH; Tsou HH
    BMC Public Health; 2023 Aug; 23(1):1500. PubMed ID: 37553650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study.
    Yu CS; Chang SS; Chang TH; Wu JL; Lin YJ; Chien HF; Chen RJ
    J Med Internet Res; 2021 May; 23(5):e27806. PubMed ID: 33900932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forecasting the spread of COVID-19 based on policy, vaccination, and Omicron data.
    Han K; Lee B; Lee D; Heo G; Oh J; Lee S; Apio C; Park T
    Sci Rep; 2024 Apr; 14(1):9962. PubMed ID: 38693172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of the COVID-19 Pandemic for the Top 15 Affected Countries: Advanced Autoregressive Integrated Moving Average (ARIMA) Model.
    Singh RK; Rani M; Bhagavathula AS; Sah R; Rodriguez-Morales AJ; Kalita H; Nanda C; Sharma S; Sharma YD; Rabaan AA; Rahmani J; Kumar P
    JMIR Public Health Surveill; 2020 May; 6(2):e19115. PubMed ID: 32391801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forecasting the COVID-19 Epidemic by Integrating Symptom Search Behavior Into Predictive Models: Infoveillance Study.
    Rabiolo A; Alladio E; Morales E; McNaught AI; Bandello F; Afifi AA; Marchese A
    J Med Internet Res; 2021 Aug; 23(8):e28876. PubMed ID: 34156966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forecasting the dynamics of cumulative COVID-19 cases (confirmed, recovered and deaths) for top-16 countries using statistical machine learning models: Auto-Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-Regressive Integrated Moving Average (SARIMA).
    ArunKumar KE; Kalaga DV; Sai Kumar CM; Chilkoor G; Kawaji M; Brenza TM
    Appl Soft Comput; 2021 May; 103():107161. PubMed ID: 33584158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-Range Forecasting of COVID-19 During Early Onset at County, Health District, and State Geographic Levels Using Seven Methods: Comparative Forecasting Study.
    Lynch CJ; Gore R
    J Med Internet Res; 2021 Mar; 23(3):e24925. PubMed ID: 33621186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term forecasting of the COVID-19 outbreak in India.
    Mangla S; Pathak AK; Arshad M; Haque U
    Int Health; 2021 Sep; 13(5):410-420. PubMed ID: 34091670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of global omicron pandemic using ARIMA, MLR, and Prophet models.
    Zhao D; Zhang R; Zhang H; He S
    Sci Rep; 2022 Oct; 12(1):18138. PubMed ID: 36307471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forecasting the Severity of COVID-19 Pandemic Amidst the Emerging SARS-CoV-2 Variants: Adoption of ARIMA Model.
    Li C; Sampene AK; Agyeman FO; Robert B; Ayisi AL
    Comput Math Methods Med; 2022; 2022():3163854. PubMed ID: 35069779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forecasting COVID-19 Case Trends Using SARIMA Models during the Third Wave of COVID-19 in Malaysia.
    Tan CV; Singh S; Lai CH; Zamri ASSM; Dass SC; Aris TB; Ibrahim HM; Gill BS
    Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal Trends in Self-Reported Mask-Wearing Behavior in the United States: Analysis of a Large Cross-sectional Survey.
    Taube JC; Susswein Z; Bansal S
    JMIR Public Health Surveill; 2023 Mar; 9():e42128. PubMed ID: 36877548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forecasting COVID-19 confirmed cases, deaths and recoveries: Revisiting established time series modeling through novel applications for the USA and Italy.
    Gecili E; Ziady A; Szczesniak RD
    PLoS One; 2021; 16(1):e0244173. PubMed ID: 33411744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ensemble
    Chowell G; Dahal S; Tariq A; Roosa K; Hyman JM; Luo R
    medRxiv; 2022 Jun; ():. PubMed ID: 35794886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of Time Forecasting Models Using Machine Learning for Future Pandemic Applications Based on COVID-19 Data 2020-2022.
    K Abdul Hamid AA; Wan Mohamad Nawi WIA; Lola MS; Mustafa WA; Abdul Malik SM; Zakaria S; Aruchunan E; Zainuddin NH; Gobithaasan RU; Abdullah MT
    Diagnostics (Basel); 2023 Mar; 13(6):. PubMed ID: 36980429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of COVID-19 prevalence in Italy, Spain, and France.
    Ceylan Z
    Sci Total Environ; 2020 Aug; 729():138817. PubMed ID: 32360907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forecasting the epidemiological trends of COVID-19 prevalence and mortality using the advanced
    Wang Y; Xu C; Yao S; Zhao Y
    Epidemiol Infect; 2020 Oct; 148():e236. PubMed ID: 33012300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Empirical Evaluation of Alternative Time-Series Models for COVID-19 Forecasting in Saudi Arabia.
    Al-Turaiki I; Almutlaq F; Alrasheed H; Alballa N
    Int J Environ Res Public Health; 2021 Aug; 18(16):. PubMed ID: 34444409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forecasting COVID-19 in Pakistan.
    Ali M; Khan DM; Aamir M; Khalil U; Khan Z
    PLoS One; 2020; 15(11):e0242762. PubMed ID: 33253248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Predictive Models and Impact Assessment of Lockdown for COVID-19 over the United States.
    Makinde OS; Adeola AM; Abiodun GJ; Olusola-Makinde OO; Alejandro A
    J Epidemiol Glob Health; 2021 Jun; 11(2):200-207. PubMed ID: 33876598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.