These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 37553864)

  • 1. Topography of inputs into the hippocampal formation of a food-caching bird.
    Applegate MC; Gutnichenko KS; Aronov D
    J Comp Neurol; 2023 Nov; 531(16):1669-1688. PubMed ID: 37553864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topography of inputs into the hippocampal formation of a food-caching bird.
    Applegate MC; Gutnichenko KS; Aronov D
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An entorhinal-like region in food-caching birds.
    Applegate MC; Gutnichenko KS; Mackevicius EL; Aronov D
    Curr Biol; 2023 Jun; 33(12):2465-2477.e7. PubMed ID: 37295426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible use of memory by food-caching birds.
    Applegate MC; Aronov D
    Elife; 2022 Apr; 11():. PubMed ID: 35467526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An entorhinal-like region in food-caching birds.
    Applegate MC; Gutnichenko KS; Mackevicius EL; Aronov D
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcortical connections of the perirhinal, postrhinal, and entorhinal cortices of the rat. I. afferents.
    Tomás Pereira I; Agster KL; Burwell RD
    Hippocampus; 2016 Sep; 26(9):1189-212. PubMed ID: 27119220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A test of the adaptive specialization hypothesis: population differences in caching, memory, and the hippocampus in black-capped chickadees (Poecile atricapilla).
    Pravosudov VV; Clayton NS
    Behav Neurosci; 2002 Aug; 116(4):515-22. PubMed ID: 12148919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of dorsal-ventral hippocampal differentiation in neonatal rats.
    O'Reilly KC; Flatberg A; Islam S; Olsen LC; Kruge IU; Witter MP
    Brain Struct Funct; 2015 Sep; 220(5):2873-93. PubMed ID: 25012113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights into anatomical connectivity along the anterior-posterior axis of the human hippocampus using
    Dalton MA; D'Souza A; Lv J; Calamante F
    Elife; 2022 Nov; 11():. PubMed ID: 36345716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amygdala input promotes spread of excitatory neural activity from perirhinal cortex to the entorhinal-hippocampal circuit.
    Kajiwara R; Takashima I; Mimura Y; Witter MP; Iijima T
    J Neurophysiol; 2003 Apr; 89(4):2176-84. PubMed ID: 12611981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The entorhinal cortex of the monkey: VI. Organization of projections from the hippocampus, subiculum, presubiculum, and parasubiculum.
    Witter MP; Amaral DG
    J Comp Neurol; 2021 Mar; 529(4):828-852. PubMed ID: 32656783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential hippocampal gene expression is associated with climate-related natural variation in memory and the hippocampus in food-caching chickadees.
    Pravosudov VV; Roth TC; Forister ML; Ladage LD; Kramer R; Schilkey F; van der Linden AM
    Mol Ecol; 2013 Jan; 22(2):397-408. PubMed ID: 23205699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anatomy of the avian hippocampal formation.
    Atoji Y; Wild JM
    Rev Neurosci; 2006; 17(1-2):3-15. PubMed ID: 16703939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hippocampal-medial entorhinal circuit is differently organized along the dorsoventral axis in rodents.
    Ohara S; Rannap M; Tsutsui KI; Draguhn A; Egorov AV; Witter MP
    Cell Rep; 2023 Jan; 42(1):112001. PubMed ID: 36680772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Untangling elevation-related differences in the hippocampus in food-caching mountain chickadees: the effect of a uniform captive environment.
    Freas CA; Bingman K; Ladage LD; Pravosudov VV
    Brain Behav Evol; 2013; 82(3):199-209. PubMed ID: 24192485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: combined anterograde and retrograde tracing study in the Macaque brain.
    Friedman DP; Aggleton JP; Saunders RC
    J Comp Neurol; 2002 Sep; 450(4):345-65. PubMed ID: 12209848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Annual cycle of the black-capped chickadee: seasonality of food-storing and the hippocampus.
    Hoshooley JS; Phillmore LS; Sherry DF; Macdougall-Shackleton SA
    Brain Behav Evol; 2007; 69(3):161-8. PubMed ID: 17106193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible inactivation of the hippocampal formation in food-storing black-capped chickadees (Poecile atricapillus).
    Shiflett MW; Smulders TV; Benedict L; DeVoogd TJ
    Hippocampus; 2003; 13(4):437-44. PubMed ID: 12836913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys.
    Stefanacci L; Suzuki WA; Amaral DG
    J Comp Neurol; 1996 Nov; 375(4):552-82. PubMed ID: 8930786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural representations of space in the hippocampus of a food-caching bird.
    Payne HL; Lynch GF; Aronov D
    Science; 2021 Jul; 373(6552):343-348. PubMed ID: 34437154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.