These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 37554836)
1. A machine learning-based comparative analysis of surrogate models for design optimisation in computational fluid dynamics. Mukhtar A; Yasir ASHM; Nasir MFM Heliyon; 2023 Aug; 9(8):e18674. PubMed ID: 37554836 [TBL] [Abstract][Full Text] [Related]
2. Adaptive design of experiments to fit surrogate Gaussian process regression models allows fast sensitivity analysis of the input waveform for patient-specific 3D CFD models of liver radioembolization. Bomberna T; Maleux G; Debbaut C Comput Methods Programs Biomed; 2024 Jul; 252():108234. PubMed ID: 38823206 [TBL] [Abstract][Full Text] [Related]
3. Multi-objective optimization of coronary stent using Kriging surrogate model. Li H; Gu J; Wang M; Zhao D; Li Z; Qiao A; Zhu B Biomed Eng Online; 2016 Dec; 15(Suppl 2):148. PubMed ID: 28155700 [TBL] [Abstract][Full Text] [Related]
4. Research on surrogate model of dam numerical simulation with multiple outputs based on adaptive sampling. Liang J; Li Z; Pan L; Khailah EY; Sun L; Lu W Sci Rep; 2023 Jul; 13(1):11955. PubMed ID: 37488144 [TBL] [Abstract][Full Text] [Related]
5. Design optimization of stent and its dilatation balloon using kriging surrogate model. Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895 [TBL] [Abstract][Full Text] [Related]
6. Using machine learning as a surrogate model for agent-based simulations. Angione C; Silverman E; Yaneske E PLoS One; 2022; 17(2):e0263150. PubMed ID: 35143521 [TBL] [Abstract][Full Text] [Related]
7. A comparative research of different ensemble surrogate models based on set pair analysis for the DNAPL-contaminated aquifer remediation strategy optimization. Hou Z; Lu W; Xue H; Lin J J Contam Hydrol; 2017 Aug; 203():28-37. PubMed ID: 28641890 [TBL] [Abstract][Full Text] [Related]
8. Machine learning based on computational fluid dynamics enables geometric design optimisation of the NeoVAD blades. Nissim L; Karnik S; Smith PA; Wang Y; Frazier OH; Fraser KH Sci Rep; 2023 May; 13(1):7183. PubMed ID: 37137928 [TBL] [Abstract][Full Text] [Related]
9. ASAMS: An Adaptive Sequential Sampling and Automatic Model Selection for Artificial Intelligence Surrogate Modeling. Duchanoy CA; Calvo H; Moreno-Armendáriz MA Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32957671 [TBL] [Abstract][Full Text] [Related]
10. Surrogate Model Application to the Identification of Optimal Groundwater Exploitation Scheme Based on Regression Kriging Method-A Case Study of Western Jilin Province. An Y; Lu W; Cheng W Int J Environ Res Public Health; 2015 Jul; 12(8):8897-918. PubMed ID: 26264008 [TBL] [Abstract][Full Text] [Related]
11. A construction strategy for conservative adaptive Kriging surrogate model with application in the optimal design of contaminated groundwater extraction-treatment. Zhang S; Qiang J; Liu H; Zhu X; Lv H Environ Sci Pollut Res Int; 2022 Jun; 29(28):42792-42808. PubMed ID: 35088275 [TBL] [Abstract][Full Text] [Related]
12. The future of Cochrane Neonatal. Soll RF; Ovelman C; McGuire W Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834 [TBL] [Abstract][Full Text] [Related]
13. A novel learning function for adaptive surrogate-model-based reliability evaluation. Yang S; Meng D; Wang H; Yang C Philos Trans A Math Phys Eng Sci; 2024 Jan; 382(2264):20220395. PubMed ID: 37980934 [TBL] [Abstract][Full Text] [Related]
14. Design Optimisation of Coronary Artery Stent Systems. Bressloff NW; Ragkousis G; Curzen N Ann Biomed Eng; 2016 Feb; 44(2):357-67. PubMed ID: 26183960 [TBL] [Abstract][Full Text] [Related]
15. A Computational Efficient Method to Assess the Sensitivity of Finite-Element Models: An Illustration With the Hemipelvis. O'Rourke D; Martelli S; Bottema M; Taylor M J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27685017 [TBL] [Abstract][Full Text] [Related]
16. Application of ensemble surrogates and adaptive sequential sampling to optimal groundwater remediation design at DNAPLs-contaminated sites. Ouyang Q; Lu W; Miao T; Deng W; Jiang C; Luo J J Contam Hydrol; 2017 Dec; 207():31-38. PubMed ID: 29128132 [TBL] [Abstract][Full Text] [Related]
17. Surrogate-based optimization with adaptive sampling for microfluidic concentration gradient generator design. Yang H; Hong SH; ZhG R; Wang Y RSC Adv; 2020 Apr; 10(23):13799-13814. PubMed ID: 35493014 [TBL] [Abstract][Full Text] [Related]
19. A CFD-based Kriging surrogate modeling approach for predicting device-specific hemolysis power law coefficients in blood-contacting medical devices. Craven BA; Aycock KI; Herbertson LH; Malinauskas RA Biomech Model Mechanobiol; 2019 Aug; 18(4):1005-1030. PubMed ID: 30815758 [TBL] [Abstract][Full Text] [Related]
20. Multi-Objective Optimization of Bioresorbable Magnesium Alloy Stent by Kriging Surrogate Model. Wang H; Jiao L; Sun J; Yan P; Wang X; Qiu T Cardiovasc Eng Technol; 2022 Dec; 13(6):829-839. PubMed ID: 35414048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]