These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 37555069)

  • 1. Rhizospheric bacteria: the key to sustainable heavy metal detoxification strategies.
    Joshi S; Gangola S; Bhandari G; Bhandari NS; Nainwal D; Rani A; Malik S; Slama P
    Front Microbiol; 2023; 14():1229828. PubMed ID: 37555069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation.
    Ghuge SA; Nikalje GC; Kadam US; Suprasanna P; Hong JC
    J Hazard Mater; 2023 May; 450():131039. PubMed ID: 36867909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal and metalloid toxicity in horticultural plants: Tolerance mechanism and remediation strategies.
    Noor I; Sohail H; Sun J; Nawaz MA; Li G; Hasanuzzaman M; Liu J
    Chemosphere; 2022 Sep; 303(Pt 3):135196. PubMed ID: 35659937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential applications of extremophilic bacteria in the bioremediation of extreme environments contaminated with heavy metals.
    Sun J; He X; LE Y; Al-Tohamy R; Ali SS
    J Environ Manage; 2024 Feb; 352():120081. PubMed ID: 38237330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alleviation of Heavy Metal Stress in Plants and Remediation of Soil by Rhizosphere Microorganisms.
    Mishra J; Singh R; Arora NK
    Front Microbiol; 2017; 8():1706. PubMed ID: 28932218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy Metal-Resistant Plant Growth-Promoting
    Ajmal AW; Yasmin H; Hassan MN; Khan N; Jan BL; Mumtaz S
    Front Microbiol; 2022; 13():815704. PubMed ID: 35602039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbe-Plant Interactions Targeting Metal Stress: New Dimensions for Bioremediation Applications.
    Saharan BS; Chaudhary T; Mandal BS; Kumar D; Kumar R; Sadh PK; Duhan JS
    J Xenobiot; 2023 Jun; 13(2):252-269. PubMed ID: 37367495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review.
    Abd Elnabi MK; Elkaliny NE; Elyazied MM; Azab SH; Elkhalifa SA; Elmasry S; Mouhamed MS; Shalamesh EM; Alhorieny NA; Abd Elaty AE; Elgendy IM; Etman AE; Saad KE; Tsigkou K; Ali SS; Kornaros M; Mahmoud YA
    Toxics; 2023 Jul; 11(7):. PubMed ID: 37505546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochar-bacteria-plant partnerships: Eco-solutions for tackling heavy metal pollution.
    Harindintwali JD; Zhou J; Yang W; Gu Q; Yu X
    Ecotoxicol Environ Saf; 2020 Nov; 204():111020. PubMed ID: 32810706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mechanism and Application of Plant Growth-Promoting Bacteria in Heavy Metal Bioremediation].
    Ma Y; Wang Y; Shi XJ; Chen XP; Li ZL
    Huan Jing Ke Xue; 2022 Sep; 43(9):4911-4922. PubMed ID: 36096631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Developments in Microbe-Plant-Based Bioremediation for Tackling Heavy Metal-Polluted Soils.
    Saha L; Tiwari J; Bauddh K; Ma Y
    Front Microbiol; 2021; 12():731723. PubMed ID: 35002995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial Interventions in Bioremediation of Heavy Metal Contaminants in Agroecosystem.
    Pande V; Pandey SC; Sati D; Bhatt P; Samant M
    Front Microbiol; 2022; 13():824084. PubMed ID: 35602036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the Phytoremediation of Heavy Metals by Combining Hyperaccumulator and Heavy Metal-Resistant Plant Growth-Promoting Bacteria.
    Zhang Y; Zhao S; Liu S; Peng J; Zhang H; Zhao Q; Zheng L; Chen Y; Shen Z; Xu X; Chen C
    Front Plant Sci; 2022; 13():912350. PubMed ID: 35720534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoextraction of Heavy Metals: A Promising Tool for Clean-Up of Polluted Environment?
    Suman J; Uhlik O; Viktorova J; Macek T
    Front Plant Sci; 2018; 9():1476. PubMed ID: 30459775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial and plant-assisted heavy metal remediation in aquatic ecosystems: a comprehensive review.
    Haldar S; Ghosh A
    3 Biotech; 2020 May; 10(5):205. PubMed ID: 32328403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant growth and heavy meal accumulation characteristics of
    Liu K; Dai C; Li C; Hu J; Wang Z; Li Y; Yu F; Li G
    Int J Phytoremediation; 2023; 25(4):524-537. PubMed ID: 35790485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multicontaminated soil alleviate metal toxicity in plants.
    Azcón R; Perálvarez Mdel C; Roldán A; Barea JM
    Microb Ecol; 2010 May; 59(4):668-77. PubMed ID: 20013261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Omics approaches in effective selection and generation of potential plants for phytoremediation of heavy metal from contaminated resources.
    Yadav R; Singh G; Santal AR; Singh NP
    J Environ Manage; 2023 Jun; 336():117730. PubMed ID: 36921476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Halophytes for the sustainable remediation of heavy metal-contaminated sites: Recent developments and future perspectives.
    Singh VK; Singh R; Rajput VD; Singh VK
    Chemosphere; 2023 Feb; 313():137524. PubMed ID: 36509191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.