These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 37555184)
1. Reproducing FSL's fMRI data analysis Chen Y; Hopp FR; Malik M; Wang PT; Woodman K; Youk S; Weber R Front Neuroimaging; 2022; 1():953215. PubMed ID: 37555184 [TBL] [Abstract][Full Text] [Related]
2. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Gorgolewski K; Burns CD; Madison C; Clark D; Halchenko YO; Waskom ML; Ghosh SS Front Neuroinform; 2011; 5():13. PubMed ID: 21897815 [TBL] [Abstract][Full Text] [Related]
3. NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines. Meunier D; Pascarella A; Altukhov D; Jas M; Combrisson E; Lajnef T; Bertrand-Dubois D; Hadid V; Alamian G; Alves J; Barlaam F; Saive AL; Dehgan A; Jerbi K Neuroimage; 2020 Oct; 219():117020. PubMed ID: 32522662 [TBL] [Abstract][Full Text] [Related]
4. BrainIAK tutorials: User-friendly learning materials for advanced fMRI analysis. Kumar M; Ellis CT; Lu Q; Zhang H; Capotă M; Willke TL; Ramadge PJ; Turk-Browne NB; Norman KA PLoS Comput Biol; 2020 Jan; 16(1):e1007549. PubMed ID: 31940340 [TBL] [Abstract][Full Text] [Related]
5. Exploring the impact of analysis software on task fMRI results. Bowring A; Maumet C; Nichols TE Hum Brain Mapp; 2019 Aug; 40(11):3362-3384. PubMed ID: 31050106 [TBL] [Abstract][Full Text] [Related]
6. fMRIflows: A Consortium of Fully Automatic Univariate and Multivariate fMRI Processing Pipelines. Notter MP; Herholz P; Da Costa S; Gulban OF; Isik AI; Gaglianese A; Murray MM Brain Topogr; 2023 Mar; 36(2):172-191. PubMed ID: 36575327 [TBL] [Abstract][Full Text] [Related]
7. Effects of using different software packages for BOLD analysis in planning a neurosurgical treatment in patients with brain tumours. Kozub J; Paciorek A; Urbanik A; Ostrogórska M Clin Imaging; 2020 Dec; 68():148-157. PubMed ID: 32622193 [TBL] [Abstract][Full Text] [Related]
8. Reducing individual differences in task fMRI with OGRE (One-step General Registration and Extraction) preprocessing. McAvoy MP; Liu L; Zhou R; Philip BA bioRxiv; 2024 Jun; ():. PubMed ID: 37781580 [TBL] [Abstract][Full Text] [Related]
9. Reproducibility of neuroimaging analyses across operating systems. Glatard T; Lewis LB; Ferreira da Silva R; Adalat R; Beck N; Lepage C; Rioux P; Rousseau ME; Sherif T; Deelman E; Khalili-Mahani N; Evans AC Front Neuroinform; 2015; 9():12. PubMed ID: 25964757 [TBL] [Abstract][Full Text] [Related]
10. A Java-based fMRI processing pipeline evaluation system for assessment of univariate general linear model and multivariate canonical variate analysis-based pipelines. Zhang J; Liang L; Anderson JR; Gatewood L; Rottenberg DA; Strother SC Neuroinformatics; 2008; 6(2):123-34. PubMed ID: 18506642 [TBL] [Abstract][Full Text] [Related]
12. BrainForge: an online data analysis platform for integrative neuroimaging acquisition, analysis, and sharing. Verner E; Petropoulos H; Baker B; Bockholt HJ; Fries J; Bohsali A; Raja R; Trinh DH; Calhoun V Concurr Comput; 2023 Aug; 35(18):. PubMed ID: 37744210 [TBL] [Abstract][Full Text] [Related]
13. A Comprehensive Framework to Capture the Arcana of Neuroimaging Analysis. Close TG; Ward PGD; Sforazzini F; Goscinski W; Chen Z; Egan GF Neuroinformatics; 2020 Jan; 18(1):109-129. PubMed ID: 31236848 [TBL] [Abstract][Full Text] [Related]
14. Experimenting with reproducibility: a case study of robustness in bioinformatics. Kim YM; Poline JB; Dumas G Gigascience; 2018 Jul; 7(7):. PubMed ID: 29961842 [TBL] [Abstract][Full Text] [Related]
15. Sharing brain mapping statistical results with the neuroimaging data model. Maumet C; Auer T; Bowring A; Chen G; Das S; Flandin G; Ghosh S; Glatard T; Gorgolewski KJ; Helmer KG; Jenkinson M; Keator DB; Nichols BN; Poline JB; Reynolds R; Sochat V; Turner J; Nichols TE Sci Data; 2016 Dec; 3():160102. PubMed ID: 27922621 [TBL] [Abstract][Full Text] [Related]
16. MACS - a new SPM toolbox for model assessment, comparison and selection. Soch J; Allefeld C J Neurosci Methods; 2018 Aug; 306():19-31. PubMed ID: 29842901 [TBL] [Abstract][Full Text] [Related]
17. Reproducible bioinformatics project: a community for reproducible bioinformatics analysis pipelines. Kulkarni N; Alessandrì L; Panero R; Arigoni M; Olivero M; Ferrero G; Cordero F; Beccuti M; Calogero RA BMC Bioinformatics; 2018 Oct; 19(Suppl 10):349. PubMed ID: 30367595 [TBL] [Abstract][Full Text] [Related]
18. Learning from reproducing computational results: introducing three principles and the Krafczyk MS; Shi A; Bhaskar A; Marinov D; Stodden V Philos Trans A Math Phys Eng Sci; 2021 May; 379(2197):20200069. PubMed ID: 33775145 [TBL] [Abstract][Full Text] [Related]
19. Repeatability and reproducibility of FreeSurfer, FSL-SIENAX and SPM brain volumetric measurements and the effect of lesion filling in multiple sclerosis. Guo C; Ferreira D; Fink K; Westman E; Granberg T Eur Radiol; 2019 Mar; 29(3):1355-1364. PubMed ID: 30242503 [TBL] [Abstract][Full Text] [Related]
20. Neurophysiological analytics for all! Free open-source software tools for documenting, analyzing, visualizing, and sharing using electronic notebooks. Rosenberg DM; Horn CC J Neurophysiol; 2016 Aug; 116(2):252-62. PubMed ID: 27098025 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]