These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37555230)

  • 1. AlphaFold-predicted protein structures and small-angle X-ray scattering: insights from an extended examination of selected data in the Small-Angle Scattering Biological Data Bank.
    Brookes E; Rocco M; Vachette P; Trewhella J
    J Appl Crystallogr; 2023 Aug; 56(Pt 4):910-926. PubMed ID: 37555230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering.
    Tria G; Mertens HD; Kachala M; Svergun DI
    IUCrJ; 2015 Mar; 2(Pt 2):207-17. PubMed ID: 25866658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Methods for Modeling Protein Structures Using Molecular Dynamics Simulations and Small-Angle X-Ray Scattering Data.
    Ekimoto T; Ikeguchi M
    Adv Exp Med Biol; 2018; 1105():237-258. PubMed ID: 30617833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SAXS/WAXS data of conformationally flexible ribose binding protein.
    Choudhury J; Yonezawa K; Anu A; Shimizu N; Chaudhuri B
    Data Brief; 2024 Feb; 52():109932. PubMed ID: 38178847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of SAXS for the Structural Characterization of IDPs.
    Kachala M; Valentini E; Svergun DI
    Adv Exp Med Biol; 2015; 870():261-89. PubMed ID: 26387105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.
    Chan-Yao-Chong M; Durand D; Ha-Duong T
    J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian inference of protein ensembles from SAXS data.
    Antonov LD; Olsson S; Boomsma W; Hamelryck T
    Phys Chem Chem Phys; 2016 Feb; 18(8):5832-8. PubMed ID: 26548662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analysis of flexible proteins in solution by small angle X-ray scattering combined with crystallography.
    Tsutakawa SE; Hura GL; Frankel KA; Cooper PK; Tainer JA
    J Struct Biol; 2007 May; 158(2):214-23. PubMed ID: 17182256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate optimization of amino acid form factors for computing small-angle X-ray scattering intensity of atomistic protein structures.
    Tong D; Yang S; Lu L
    J Appl Crystallogr; 2016 Aug; 49(Pt 4):1148-1161. PubMed ID: 28074088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of small-angle X-ray scattering data into structural modeling of proteins and their assemblies.
    Förster F; Webb B; Krukenberg KA; Tsuruta H; Agard DA; Sali A
    J Mol Biol; 2008 Oct; 382(4):1089-106. PubMed ID: 18694757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small angle X-ray scattering-assisted protein structure prediction in CASP13 and emergence of solution structure differences.
    Hura GL; Hodge CD; Rosenberg D; Guzenko D; Duarte JM; Monastyrskyy B; Grudinin S; Kryshtafovych A; Tainer JA; Fidelis K; Tsutakawa SE
    Proteins; 2019 Dec; 87(12):1298-1314. PubMed ID: 31589784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural characterization of flexible proteins using small-angle X-ray scattering.
    Bernadó P; Mylonas E; Petoukhov MV; Blackledge M; Svergun DI
    J Am Chem Soc; 2007 May; 129(17):5656-64. PubMed ID: 17411046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A database of calculated solution parameters for the AlphaFold predicted protein structures.
    Brookes E; Rocco M
    Sci Rep; 2022 May; 12(1):7349. PubMed ID: 35513443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling Conformationally Flexible Proteins With X-ray Scattering and Molecular Simulations.
    Powers KT; Gildenberg MS; Washington MT
    Comput Struct Biotechnol J; 2019; 17():570-578. PubMed ID: 31073392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins.
    Kikhney AG; Svergun DI
    FEBS Lett; 2015 Sep; 589(19 Pt A):2570-7. PubMed ID: 26320411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering.
    Bernadó P; Svergun DI
    Mol Biosyst; 2012 Jan; 8(1):151-67. PubMed ID: 21947276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AlphaFold, small-angle X-ray scattering and ensemble modelling: a winning combination for intrinsically disordered proteins.
    Receveur-Bréchot V
    J Appl Crystallogr; 2023 Oct; 56(Pt 5):1313-1314. PubMed ID: 37791368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AlphaFold Models of Small Proteins Rival the Accuracy of Solution NMR Structures.
    Tejero R; Huang YJ; Ramelot TA; Montelione GT
    Front Mol Biosci; 2022; 9():877000. PubMed ID: 35769913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of multiple well defined conformations on small-angle scattering of proteins in solution.
    Heller WT
    Acta Crystallogr D Biol Crystallogr; 2005 Jan; 61(Pt 1):33-44. PubMed ID: 15608373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.