These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 37555332)
1. Controlling surface cation segregation in a double perovskite for oxygen anion transport in high temperature energy conversion devices. Kala J; Anjum U; Mani BK; Haider MA Phys Chem Chem Phys; 2023 Aug; 25(33):22022-22031. PubMed ID: 37555332 [TBL] [Abstract][Full Text] [Related]
2. Controlling surface cation segregation in a nanostructured double perovskite GdBaCo Anjum U; Agarwal M; Khan TS; Prateek ; Gupta RK; Haider MA Nanoscale; 2019 Nov; 11(44):21404-21418. PubMed ID: 31674610 [TBL] [Abstract][Full Text] [Related]
3. Identifying the Origin of the Limiting Process in a Double Perovskite PrBa Anjum U; Khan TS; Agarwal M; Haider MA ACS Appl Mater Interfaces; 2019 Jul; 11(28):25243-25253. PubMed ID: 31260249 [TBL] [Abstract][Full Text] [Related]
4. Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions. Feng Z; Hong WT; Fong DD; Lee YL; Yacoby Y; Morgan D; Shao-Horn Y Acc Chem Res; 2016 May; 49(5):966-73. PubMed ID: 27149528 [TBL] [Abstract][Full Text] [Related]
5. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. Lee W; Han JW; Chen Y; Cai Z; Yildiz B J Am Chem Soc; 2013 May; 135(21):7909-25. PubMed ID: 23642000 [TBL] [Abstract][Full Text] [Related]
6. Suppression of Cation Segregation in (La,Sr)CoO Koo JY; Kwon H; Ahn M; Choi M; Son JW; Han JW; Lee W ACS Appl Mater Interfaces; 2018 Mar; 10(9):8057-8065. PubMed ID: 29443491 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical Polarization Dependence of the Elastic and Electrostatic Driving Forces to Aliovalent Dopant Segregation on LaMnO Kim D; Bliem R; Hess F; Gallet JJ; Yildiz B J Am Chem Soc; 2020 Feb; 142(7):3548-3563. PubMed ID: 31935081 [TBL] [Abstract][Full Text] [Related]
8. Development of double-perovskite compounds as cathode materials for low-temperature solid oxide fuel cells. Yoo S; Jun A; Ju YW; Odkhuu D; Hyodo J; Jeong HY; Park N; Shin J; Ishihara T; Kim G Angew Chem Int Ed Engl; 2014 Nov; 53(48):13064-7. PubMed ID: 25200006 [TBL] [Abstract][Full Text] [Related]
9. Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability. Li Y; Zhang W; Zheng Y; Chen J; Yu B; Chen Y; Liu M Chem Soc Rev; 2017 Oct; 46(20):6345-6378. PubMed ID: 28920603 [TBL] [Abstract][Full Text] [Related]
10. Surface Cation Segregation and Chromium Deposition on the Double-Perovskite Oxide PrBaCo Wei B; Schroeder M; Martin M ACS Appl Mater Interfaces; 2018 Mar; 10(10):8621-8629. PubMed ID: 29451773 [TBL] [Abstract][Full Text] [Related]
11. Engineering of Charged Defects at Perovskite Oxide Surfaces for Exceptionally Stable Solid Oxide Fuel Cell Electrodes. Choi M; Ibrahim IAM; Kim K; Koo JY; Kim SJ; Son JW; Han JW; Lee W ACS Appl Mater Interfaces; 2020 May; 12(19):21494-21504. PubMed ID: 32315147 [TBL] [Abstract][Full Text] [Related]
12. Relating surface chemistry and oxygen surface exchange in LnBaCo2O(5+δ) air electrodes. Téllez H; Druce J; Kilner JA; Ishihara T Faraday Discuss; 2015; 182():145-57. PubMed ID: 26212446 [TBL] [Abstract][Full Text] [Related]
13. The Perfect Imperfections in Electrocatalysts. Majee R; Parvin S; Arif Islam Q; Kumar A; Debnath B; Mondal S; Bhattacharjee S; Das S; Kumar A; Bhattacharyya S Chem Rec; 2022 Sep; 22(9):e202200070. PubMed ID: 35675947 [TBL] [Abstract][Full Text] [Related]
14. Engineering surface segregation of perovskite oxide through wet exsolution for CO catalytic oxidation. Li Z; Wang X; Li X; Zeng M; Redshaw C; Cao R; Sarangi R; Hou C; Chen Z; Zhang W; Wang N; Wu X; Zhu Y; Wu YA J Hazard Mater; 2022 Aug; 436():129110. PubMed ID: 35739693 [TBL] [Abstract][Full Text] [Related]
15. Ab Initio Approach for Prediction of Oxide Surface Structure, Stoichiometry, and Electrocatalytic Activity in Aqueous Solution. Rong X; Kolpak AM J Phys Chem Lett; 2015 May; 6(9):1785-9. PubMed ID: 26263350 [TBL] [Abstract][Full Text] [Related]
16. Correlation of Time-Dependent Oxygen Surface Exchange Kinetics with Surface Chemistry of La Kim D; Park JW; Yun BH; Park JH; Lee KT ACS Appl Mater Interfaces; 2019 Sep; 11(35):31786-31792. PubMed ID: 31408308 [TBL] [Abstract][Full Text] [Related]
17. Cation Segregation of A-Site Deficiency Perovskite La Cong Y; Geng Z; Sun Y; Yuan L; Wang X; Zhang X; Wang L; Zhang W; Huang K; Feng S ACS Appl Mater Interfaces; 2018 Aug; 10(30):25465-25472. PubMed ID: 29984983 [TBL] [Abstract][Full Text] [Related]
18. Effect of A-Site Cation Ordering on Chemical Stability, Oxygen Stoichiometry and Electrical Conductivity in Layered LaBaCo₂O Bernuy-Lopez C; Høydalsvik K; Einarsrud MA; Grande T Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773279 [TBL] [Abstract][Full Text] [Related]
19. New Phosphorus-Doped Perovskite Oxide as an Oxygen Reduction Reaction Electrocatalyst in an Alkaline Solution. Shen Y; Zhu Y; Sunarso J; Guan D; Liu B; Liu H; Zhou W; Shao Z Chemistry; 2018 May; 24(27):6950-6957. PubMed ID: 29411451 [TBL] [Abstract][Full Text] [Related]
20. B-Site Cation-Ordered Double-Perovskite Oxide as an Outstanding Electrode Material for Supercapacitive Energy Storage Based on the Anion Intercalation Mechanism. Xu Z; Liu Y; Zhou W; Tade MO; Shao Z ACS Appl Mater Interfaces; 2018 Mar; 10(11):9415-9423. PubMed ID: 29468868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]