These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 37555368)
1. Plasmon-Induced Charge Transfer-Enhanced Raman Scattering on a Semiconductor: Toward Amplification-Free Quantification of SARS-CoV-2. Feng E; Zheng T; He X; Chen J; Gu Q; He X; Hu F; Li J; Tian Y Angew Chem Int Ed Engl; 2023 Sep; 62(38):e202309249. PubMed ID: 37555368 [TBL] [Abstract][Full Text] [Related]
2. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer. Liu Y; Ma H; Han XX; Zhao B Mater Horiz; 2021 Feb; 8(2):370-382. PubMed ID: 34821260 [TBL] [Abstract][Full Text] [Related]
3. Quasi-Metal for Highly Sensitive and Stable Surface-Enhanced Raman Scattering. Tian Z; Bai H; Chen C; Ye Y; Kong Q; Li Y; Fan W; Yi W; Xi G iScience; 2019 Sep; 19():836-849. PubMed ID: 31505331 [TBL] [Abstract][Full Text] [Related]
4. Application of the amplification-free SERS-based CRISPR/Cas12a platform in the identification of SARS-CoV-2 from clinical samples. Liang J; Teng P; Xiao W; He G; Song Q; Zhang Y; Peng B; Li G; Hu L; Cao D; Tang Y J Nanobiotechnology; 2021 Sep; 19(1):273. PubMed ID: 34496881 [TBL] [Abstract][Full Text] [Related]
6. Plasmonic nanostructure-enhanced Raman scattering for detection of SARS-CoV-2 nucleocapsid protein and spike protein variants. Yeh YJ; Le TN; Hsiao WW; Tung KL; Ostrikov KK; Chiang WH Anal Chim Acta; 2023 Jan; 1239():340651. PubMed ID: 36628748 [TBL] [Abstract][Full Text] [Related]
7. Noble-Metal-Free Materials for Surface-Enhanced Raman Spectroscopy Detection. Tan X; Melkersson J; Wu S; Wang L; Zhang J Chemphyschem; 2016 Sep; 17(17):2630-9. PubMed ID: 27191682 [TBL] [Abstract][Full Text] [Related]
8. SARS-CoV-2 proteins monitored by long-range surface plasmon field-enhanced Raman scattering with hybrid bowtie nanoaperture arrays and nanocavities. Luo X; Yue W; Zhang S; Liu H; Chen Z; Qiao L; Wu C; Li P; He Y Lab Chip; 2023 Jan; 23(2):388-399. PubMed ID: 36621932 [TBL] [Abstract][Full Text] [Related]
9. Label-Free SERS Quantum Semiconductor Probe for Molecular-Level and in Vitro Cellular Detection: A Noble-Metal-Free Methodology. Keshavarz M; Tan B; Venkatakrishnan K ACS Appl Mater Interfaces; 2018 Oct; 10(41):34886-34904. PubMed ID: 30239189 [TBL] [Abstract][Full Text] [Related]
10. Model of the SARS-CoV-2 Virus for Development of a DNA-Modified, Surface-Enhanced Raman Spectroscopy Sensor with a Novel Hybrid Plasmonic Platform in Sandwich Mode. Samodelova MV; Kapitanova OO; Meshcheryakova NF; Novikov SM; Yarenkov NR; Streletskii OA; Yakubovsky DI; Grabovenko FI; Zhdanov GA; Arsenin AV; Volkov VS; Zavyalova EG; Veselova IA; Zvereva MI Biosensors (Basel); 2022 Sep; 12(9):. PubMed ID: 36140152 [TBL] [Abstract][Full Text] [Related]
11. Synergistic photoinduced charge transfer resonance from porous ZIF-67 decorated violet phosphorus array for SERS immunoassay of SARS-CoV-2 spike protein. Wang C; Zhao J; Gu C; Jiang T; Li X Colloids Surf B Biointerfaces; 2024 May; 237():113833. PubMed ID: 38484444 [TBL] [Abstract][Full Text] [Related]
12. Metal-Organic Frameworks as Surface Enhanced Raman Scattering Substrates with High Tailorability. Sun H; Cong S; Zheng Z; Wang Z; Chen Z; Zhao Z J Am Chem Soc; 2019 Jan; 141(2):870-878. PubMed ID: 30566339 [TBL] [Abstract][Full Text] [Related]
13. The Label-Free Detection and Identification of SARS-CoV-2 Using Surface-Enhanced Raman Spectroscopy and Principal Component Analysis. Zhou L; Vestri A; Marchesano V; Rippa M; Sagnelli D; Picazio G; Fusco G; Han J; Zhou J; Petti L Biosensors (Basel); 2023 Dec; 13(12):. PubMed ID: 38131774 [TBL] [Abstract][Full Text] [Related]
14. Plasmonic Molybdenum Tungsten Oxide Hybrid with Surface-Enhanced Raman Scattering Comparable to that of Noble Metals. Li P; Zhu L; Ma C; Zhang L; Guo L; Liu Y; Ma H; Zhao B ACS Appl Mater Interfaces; 2020 Apr; 12(16):19153-19160. PubMed ID: 32233413 [TBL] [Abstract][Full Text] [Related]
15. Band Structure Engineering within Two-Dimensional Borocarbonitride Nanosheets for Surface-Enhanced Raman Scattering. Liang C; Lu ZA; Zheng M; Chen M; Zhang Y; Zhang B; Zhang J; Xu P Nano Lett; 2022 Aug; 22(16):6590-6598. PubMed ID: 35969868 [TBL] [Abstract][Full Text] [Related]
16. Electric Field-Induced Chemical Surface-Enhanced Raman Spectroscopy Enhancement from Aligned Peptide Nanotube-Graphene Oxide Templates for Universal Trace Detection of Biomolecules. Almohammed S; Zhang F; Rodriguez BJ; Rice JH J Phys Chem Lett; 2019 Apr; 10(8):1878-1887. PubMed ID: 30925050 [TBL] [Abstract][Full Text] [Related]
17. A surface-imprinted surface-enhanced Raman scattering sensor for histamine detection based on dual semiconductors and Ag nanoparticles. Chen C; Wang X; Waterhouse GIN; Qiao X; Xu Z Food Chem; 2022 Feb; 369():130971. PubMed ID: 34488130 [TBL] [Abstract][Full Text] [Related]
18. 2D GaN for Highly Reproducible Surface Enhanced Raman Scattering. Zhao S; Wang H; Niu L; Xiong W; Chen Y; Zeng M; Yuan S; Fu L Small; 2021 Nov; 17(45):e2103442. PubMed ID: 34569140 [TBL] [Abstract][Full Text] [Related]
19. Plasmon-coupled charge transfer in WO Hou X; Luo X; Fan X; Peng Z; Qiu T Phys Chem Chem Phys; 2019 Jan; 21(5):2611-2618. PubMed ID: 30657494 [TBL] [Abstract][Full Text] [Related]
20. Probing the mutation independent interaction of DNA probes with SARS-CoV-2 variants through a combination of surface-enhanced Raman scattering and machine learning. Moitra P; Chaichi A; Abid Hasan SM; Dighe K; Alafeef M; Prasad A; Gartia MR; Pan D Biosens Bioelectron; 2022 Jul; 208():114200. PubMed ID: 35367703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]