These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Sodium-promoted Pd/TiO2 for catalytic oxidation of formaldehyde at ambient temperature. Zhang C; Li Y; Wang Y; He H Environ Sci Technol; 2014 May; 48(10):5816-22. PubMed ID: 24738832 [TBL] [Abstract][Full Text] [Related]
6. Pd Modification and Supporting Effects on Catalytic Dehydration of Ethanol to Ethylene and Diethyl Ether over W/TiO Tresatayawed A; Glinrun P; Autthanit C; Jongsomjit B J Oleo Sci; 2020; 69(5):503-515. PubMed ID: 32378552 [TBL] [Abstract][Full Text] [Related]
7. Use of Au@Void@TiO Lee I; Zaera F J Chem Phys; 2019 Dec; 151(23):234706. PubMed ID: 31864236 [TBL] [Abstract][Full Text] [Related]
9. Effect of TiO Cai J; Yu Z; Fan X; Li J Molecules; 2022 Jun; 27(12):. PubMed ID: 35744997 [TBL] [Abstract][Full Text] [Related]
10. Base-free oxidation of glycerol using titania-supported trimetallic Au–Pd–Pt nanoparticles. Kondrat SA; Miedziak PJ; Douthwaite M; Brett GL; Davies TE; Morgan DJ; Edwards JK; Knight DW; Kiely CJ; Taylor SH; Hutchings GJ ChemSusChem; 2014 May; 7(5):1326-34. PubMed ID: 24955446 [TBL] [Abstract][Full Text] [Related]
11. CeO Wang H; Yao R; Zhang R; Ma H; Gao J; Liang M; Zhao Y; Miao Z Molecules; 2023 Feb; 28(4):. PubMed ID: 36838854 [TBL] [Abstract][Full Text] [Related]
12. Charge State of Au Atoms on an Oxidized Rutile TiO Zhu Q; Adachi Y; Wen H; Xu R; Cheng Z; Sugawara Y; Li Y Langmuir; 2024 Jan; 40(2):1358-1363. PubMed ID: 38174984 [TBL] [Abstract][Full Text] [Related]
13. Influence of promoter on the catalytic activity of high performance Pd/PATP catalysts. Han W; Zhang P; Pan X; Tang Z; Lu G J Hazard Mater; 2013 Dec; 263 Pt 2():299-306. PubMed ID: 24225591 [TBL] [Abstract][Full Text] [Related]
14. Catalytic oxidation of 1,2-DCBz over V Du C; Wang Q; Peng Y; Lu S; Ji L; Ni M Environ Sci Pollut Res Int; 2017 Feb; 24(5):4894-4901. PubMed ID: 27988900 [TBL] [Abstract][Full Text] [Related]
15. Effect of the Mn oxidation state and lattice oxygen in Mn-based TiO2 catalysts on the low-temperature selective catalytic reduction of NO by NH3. Lee SM; Park KH; Kim SS; Kwon DW; Hong SC J Air Waste Manag Assoc; 2012 Sep; 62(9):1085-92. PubMed ID: 23019822 [TBL] [Abstract][Full Text] [Related]
16. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. Shen B; Liu T; Zhao N; Yang X; Deng L J Environ Sci (China); 2010; 22(9):1447-54. PubMed ID: 21174978 [TBL] [Abstract][Full Text] [Related]
17. KPFM/AFM imaging on TiO Arima E; Wen HF; Naitoh Y; Li YJ; Sugawara Y Nanotechnology; 2018 Mar; 29(10):105504. PubMed ID: 29313525 [TBL] [Abstract][Full Text] [Related]
18. CO oxidation activity of Pt, Zn and ZnPt nanocatalysts: a comparative study by in situ near-ambient pressure X-ray photoelectron spectroscopy. Naitabdi A; Boucly A; Rochet F; Fagiewicz R; Olivieri G; Bournel F; Benbalagh R; Sirotti F; Gallet JJ Nanoscale; 2018 Apr; 10(14):6566-6580. PubMed ID: 29577122 [TBL] [Abstract][Full Text] [Related]
19. Preparation, characterization and catalytic properties of Pd-Fe-zeolite and Pd-Ce-zeolite composite catalysts. Bi YS; Dang GY; Zhao XH; Meng XF; Lu HJ; Jin JT J Hazard Mater; 2012 Aug; 229-230():245-50. PubMed ID: 22727393 [TBL] [Abstract][Full Text] [Related]
20. Kinetic evidence for the influence of subsurface oxygen on palladium surfaces towards CO oxidation at high temperatures. Gopinath CS; Thirunavukkarasu K; Nagarajan S Chem Asian J; 2009 Jan; 4(1):74-80. PubMed ID: 18844311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]