These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37555537)

  • 1. Manipulating Sulfur Conversion Kinetics through Interfacial Built-In Electric Field Enhanced Bidirectional Mott-Schottky Electrocatalysts in Lithium-Sulfur Batteries.
    Liu G; Zeng Q; Wu Q; Tian S; Sun X; Wang D; Li X; Wei W; Wu T; Zhang Y; Sheng Y; Tao K; Xie E; Zhang Z
    ACS Appl Mater Interfaces; 2023 Aug; 15(33):39384-39395. PubMed ID: 37555537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of the Ni
    Zhang Q; Zhang X; Qiao S; Lei D; Wang Q; Shi X; Huang C; Lu W; Yang S; Tian Y; Liu Z; He G; Zhang F
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5253-5264. PubMed ID: 36683487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistically Accelerating Adsorption-Electrocataysis of Sulfur Species via Interfacial Built-In Electric Field of SnS
    Chen L; Yue L; Wang X; Wu S; Wang W; Lu D; Liu X; Zhou W; Li Y
    Small; 2023 Apr; 19(15):e2206462. PubMed ID: 36642788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulating Redox Kinetics of Sulfur Species Using Mott-Schottky Electrocatalysts for Advanced Lithium-Sulfur Batteries.
    Li Y; Wang W; Zhang B; Fu L; Wan M; Li G; Cai Z; Tu S; Duan X; Seh ZW; Jiang J; Sun Y
    Nano Lett; 2021 Aug; 21(15):6656-6663. PubMed ID: 34291943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Built-In Electric Field on the Mott-Schottky Heterointerface-Enabled Fast Kinetics Lithium-Sulfur Batteries.
    Cai DQ; Gao YT; Wang XY; Yang JL; Zhao SX
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):38651-38659. PubMed ID: 35975901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mott-Schottky electrocatalyst selectively mediates the sulfur species conversion in lithium-sulfur batteries.
    Ma W; Shao Z; Yao J; Zhao K; Ma X; Wu L; Zhang X
    J Colloid Interface Sci; 2023 Feb; 631(Pt B):114-124. PubMed ID: 36399804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mott-Schottky MXene@WS
    Wang Q; Liu A; Qiao S; Zhang Q; Huang C; Lei D; Shi X; He G; Zhang F
    ChemSusChem; 2023 Oct; 16(19):e202300507. PubMed ID: 37314096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ZnFe
    Zhang D; Luo Y; Liu J; Dong Y; Xiang C; Zhao C; Shu H; Hou J; Wang X; Chen M
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35579110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Mott-Schottky Heterojunction with Strong Chemisorption and Fast Conversion Effects for Room-Temperature Na-S Batteries.
    Wang T; Li W; Fu Y; Wang D; Wu L; Sun K; Liu D; Ma R; Shi Y; Yang G; Wu Y; He D
    Small; 2024 Jun; 20(24):e2311180. PubMed ID: 38174602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting reaction kinetics and reversibility in Mott-Schottky VS
    Dong Y; Liu Y; Hu Y; Ma K; Jiang H; Li C
    Sci Bull (Beijing); 2020 Sep; 65(17):1470-1478. PubMed ID: 36747404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous Built-In Electric Field in C
    Liang Z; Peng C; Shen J; Yuan J; Yang Y; Xue D; Zhu M; Liu J
    Small; 2024 May; 20(18):e2309717. PubMed ID: 38054621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Sulfur Redox and Polysulfide Regulation via Porous VN-Modified Separator for Li-S Batteries.
    Song Y; Zhao S; Chen Y; Cai J; Li J; Yang Q; Sun J; Liu Z
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5687-5694. PubMed ID: 30714710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective Bidirectional Mott-Schottky Catalysts Derived from Spent LiFePO
    Zhang M; Zhang Z; Wu F; Wang M; Yu X
    Small; 2024 Jun; 20(25):e2309146. PubMed ID: 38372004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Furnishing Continuous Efficient Bidirectional Polysulfide Conversion for Long-Life and High-Loading Lithium-Sulfur Batteries via the Built-In Electric Field.
    Ren Y; Ma Y; Wang B; Chang S; Zhai Q; Wu H; Dai Y; Yang Y; Tang S; Meng X
    Small; 2023 Sep; 19(36):e2300065. PubMed ID: 37147776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. P-Doped NiTe
    Yao W; Tian C; Yang C; Xu J; Meng Y; Manke I; Chen N; Wu Z; Zhan L; Wang Y; Chen R
    Adv Mater; 2022 Mar; 34(11):e2106370. PubMed ID: 35019192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel hydrothermal synthesis of Mn-TaS
    Shrshr AE; Dong Y; Al-Tahan MA; Han L; Kang X; Guan H; Zhang J
    J Colloid Interface Sci; 2023 Mar; 633():1042-1053. PubMed ID: 36516680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hollow heterostructure design enables self-cleaning surface for enhanced polysulfides conversion in advanced lithium-sulfur batteries.
    Ren R; Zhao Z; Meng Z; Wang X
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1576-1584. PubMed ID: 34742074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Bandgap Se-Deficient Antimony Selenide as a Multifunctional Polysulfide Barrier toward High-Performance Lithium-Sulfur Batteries.
    Tian Y; Li G; Zhang Y; Luo D; Wang X; Zhao Y; Liu H; Ji P; Du X; Li J; Chen Z
    Adv Mater; 2020 Jan; 32(4):e1904876. PubMed ID: 31697001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of titanium-deficient anatase TiO
    Yang J; Xu L; Li S; Peng C
    Nanoscale; 2020 Feb; 12(7):4645-4654. PubMed ID: 32048678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CrP Nanocatalyst within Porous MOF Architecture to Accelerate Polysulfide Conversion in Lithium-Sulfur Batteries.
    Zhang X; Shen Z; Wen Y; He Q; Yao J; Cheng H; Gao T; Wang X; Zhang H; Jiao H
    ACS Appl Mater Interfaces; 2023 May; 15(17):21040-21048. PubMed ID: 37074218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.