These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 37555628)

  • 1. Caracal: A Versatile Ring Polymer Molecular Dynamics Simulation Package.
    Steffen J
    J Chem Theory Comput; 2023 Aug; 19(16):5334-5355. PubMed ID: 37555628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new class of reaction path based potential energy surfaces enabling accurate black box chemical rate constant calculations.
    Steffen J
    J Chem Phys; 2019 Apr; 150(15):154105. PubMed ID: 31005095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cheap but accurate calculation of chemical reaction rate constants from ab initio data, via system-specific, black-box force fields.
    Steffen J; Hartke B
    J Chem Phys; 2017 Oct; 147(16):161701. PubMed ID: 28456151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ring-Polymer Molecular Dynamics Rate Coefficient Calculations for Insertion Reactions: X + H2 → HX + H (X = N, O).
    Li Y; Suleimanov YV; Guo H
    J Phys Chem Lett; 2014 Feb; 5(4):700-5. PubMed ID: 26270840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated calculation of thermal rate coefficients using ring polymer molecular dynamics and machine-learning interatomic potentials with active learning.
    Novikov IS; Suleimanov YV; Shapeev AV
    Phys Chem Chem Phys; 2018 Nov; 20(46):29503-29512. PubMed ID: 30457606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ring polymer molecular dynamics study of the OH + H
    Castillo JF; Suleimanov YV
    Phys Chem Chem Phys; 2017 Nov; 19(43):29170-29176. PubMed ID: 29067371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerated path-integral simulations using ring-polymer interpolation.
    Buxton SJ; Habershon S
    J Chem Phys; 2017 Dec; 147(22):224107. PubMed ID: 29246050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Empirical Valence Bond Simulations with GROMACS.
    Oanca G; van der Ent F; Åqvist J
    J Chem Theory Comput; 2023 Sep; 19(17):6037-6045. PubMed ID: 37623818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental and theoretical investigation of the C(
    Hickson KM; Suleimanov YV
    Phys Chem Chem Phys; 2016 Dec; 19(1):480-486. PubMed ID: 27905604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Q-RepEx: A Python pipeline to increase the sampling of empirical valence bond simulations.
    Brickel S; Demkiv AO; Crean RM; Pinto GP; Kamerlin SCL
    J Mol Graph Model; 2023 Mar; 119():108402. PubMed ID: 36610324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A General Quantum Mechanically Derived Force Field (QMDFF) for Molecules and Condensed Phase Simulations.
    Grimme S
    J Chem Theory Comput; 2014 Oct; 10(10):4497-514. PubMed ID: 26588146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ring polymer molecular dynamics and active learning of moment tensor potential for gas-phase barrierless reactions: Application to S + H
    Novikov IS; Shapeev AV; Suleimanov YV
    J Chem Phys; 2019 Dec; 151(22):224105. PubMed ID: 31837691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Stress Test for Ring Polymer Molecular Dynamics: Rate Coefficients of the O(
    Menéndez M; Jambrina PG; Zanchet A; Verdasco E; Suleimanov YV; Aoiz FJ
    J Phys Chem A; 2019 Sep; 123(37):7920-7931. PubMed ID: 31461272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive force fields made simple.
    Hartke B; Grimme S
    Phys Chem Chem Phys; 2015 Jul; 17(26):16715-8. PubMed ID: 26073873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetically constrained ring-polymer molecular dynamics for non-adiabatic chemical reactions.
    Menzeleev AR; Bell F; Miller TF
    J Chem Phys; 2014 Feb; 140(6):064103. PubMed ID: 24527896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recrossing and Tunneling in the Kinetics Study of the OH + CH4 → H2O + CH3 Reaction.
    Suleimanov YV; Espinosa-Garcia J
    J Phys Chem B; 2016 Mar; 120(8):1418-28. PubMed ID: 25853403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EVB and polarizable MM study of energy relaxation in fluorine-acetonitrile reactions.
    Zhang X; Harvey JN
    Phys Chem Chem Phys; 2019 Jul; 21(26):14331-14340. PubMed ID: 30698596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Derivation of a true (t → 0+) quantum transition-state theory. II. Recovery of the exact quantum rate in the absence of recrossing.
    Althorpe SC; Hele TJ
    J Chem Phys; 2013 Aug; 139(8):084115. PubMed ID: 24006982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of proton translocations in biological systems: simulating proton transport in carbonic anhydrase by EVB-based models.
    Braun-Sand S; Strajbl M; Warshel A
    Biophys J; 2004 Oct; 87(4):2221-39. PubMed ID: 15454425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.