BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37555756)

  • 1. Tunable Synthetic Hydrogels to Study Angiogenic Sprouting.
    Trapani G; Weiß MS; Trappmann B
    Curr Protoc; 2023 Aug; 3(8):e859. PubMed ID: 37555756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matrix Resistance Toward Proteolytic Cleavage Controls Contractility-Dependent Migration Modes During Angiogenic Sprouting.
    Weiß MS; Trapani G; Long H; Trappmann B
    Adv Sci (Weinh); 2024 May; 11(19):e2305947. PubMed ID: 38477409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic extracellular matrices with tailored adhesiveness and degradability support lumen formation during angiogenic sprouting.
    Liu J; Long H; Zeuschner D; Räder AFB; Polacheck WJ; Kessler H; Sorokin L; Trappmann B
    Nat Commun; 2021 Jun; 12(1):3402. PubMed ID: 34099677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct comparison of angiogenesis in natural and synthetic biomaterials reveals that matrix porosity regulates endothelial cell invasion speed and sprout diameter.
    Wang WY; Kent RN; Huang SA; Jarman EH; Shikanov EH; Davidson CD; Hiraki HL; Lin D; Wall MA; Matera DL; Shin JW; Polacheck WJ; Shikanov A; Baker BM
    Acta Biomater; 2021 Nov; 135():260-273. PubMed ID: 34469789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human iPSC-derived endothelial cell sprouting assay in synthetic hydrogel arrays.
    Belair DG; Schwartz MP; Knudsen T; Murphy WL
    Acta Biomater; 2016 Jul; 39():12-24. PubMed ID: 27181878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration.
    Silva CR; Babo PS; Gulino M; Costa L; Oliveira JM; Silva-Correia J; Domingues RMA; Reis RL; Gomes ME
    Acta Biomater; 2018 Sep; 77():155-171. PubMed ID: 30031163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrix degradability controls multicellularity of 3D cell migration.
    Trappmann B; Baker BM; Polacheck WJ; Choi CK; Burdick JA; Chen CS
    Nat Commun; 2017 Aug; 8(1):371. PubMed ID: 28851858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix.
    Kuo KC; Lin RZ; Tien HW; Wu PY; Li YC; Melero-Martin JM; Chen YC
    Acta Biomater; 2015 Nov; 27():151-166. PubMed ID: 26348142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial-Controlled Coating of Pro-Angiogenic Proteins on 3D Porous Hydrogels Guides Endothelial Cell Behavior.
    Le Bao C; Waller H; Dellaquila A; Peters D; Lakey J; Chaubet F; Simon-Yarza T
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36498931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perfused 3D angiogenic sprouting in a high-throughput in vitro platform.
    van Duinen V; Zhu D; Ramakers C; van Zonneveld AJ; Vulto P; Hankemeier T
    Angiogenesis; 2019 Feb; 22(1):157-165. PubMed ID: 30171498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
    Heo DN; Hospodiuk M; Ozbolat IT
    Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular Matrix-Derived Biophysical Cues Mediate Interstitial Flow-Induced Sprouting Angiogenesis.
    Chang CW; Shih HC; Cortes-Medina MG; Beshay PE; Avendano A; Seibel AJ; Liao WH; Tung YC; Song JW
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15047-15058. PubMed ID: 36916875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogel matrix presence and composition influence drug responses of encapsulated glioblastoma spheroids.
    Hill L; Bruns J; Zustiak SP
    Acta Biomater; 2021 Sep; 132():437-447. PubMed ID: 34010694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vitro Spheroid Sprouting Assay of Angiogenesis.
    Zahra FT; Choleva E; Sajib MS; Papadimitriou E; Mikelis CM
    Methods Mol Biol; 2019; 1952():211-218. PubMed ID: 30825177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gelatin-Based Matrices as a Tunable Platform To Study in Vitro and in Vivo 3D Cell Invasion.
    Peter M; Singh A; Mohankumar K; Jeenger R; Joge PA; Gatne MM; Tayalia P
    ACS Appl Bio Mater; 2019 Feb; 2(2):916-929. PubMed ID: 35016295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dipeptide Self-Assembled Hydrogels with Tunable Mechanical Properties and Degradability for 3D Bioprinting.
    Jian H; Wang M; Dong Q; Li J; Wang A; Li X; Ren P; Bai S
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46419-46426. PubMed ID: 31769283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delivery of Endothelial Cell-Laden Microgel Elicits Angiogenesis in Self-Assembling Ultrashort Peptide Hydrogels In Vitro.
    Ramirez-Calderon G; Susapto HH; Hauser CAE
    ACS Appl Mater Interfaces; 2021 Jun; 13(25):29281-29292. PubMed ID: 34142544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibrin-Enriched Cardiac Extracellular Matrix Hydrogel Promotes
    Shaik R; Xu J; Wang Y; Hong Y; Zhang G
    ACS Biomater Sci Eng; 2023 Feb; 9(2):877-888. PubMed ID: 36630688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of cell laden hydrogels with temporally tunable stiffness in biomedical research.
    AhmadianKia N; Goli-Malekabadi Z; Pournaghmeh S
    J Biomater Appl; 2023 Aug; 38(2):179-193. PubMed ID: 37357779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.
    Wang C; Tong X; Yang F
    Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.