These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 3755577)

  • 1. Postnatal growth of the human temporal bone. Implications for cochlear implants in children.
    Eby TL; Nadol JB
    Ann Otol Rhinol Laryngol; 1986; 95(4 Pt 1):356-64. PubMed ID: 3755577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The postnatal growth of the temporal bone and its implications for cochlear implantation in children.
    Dahm MC; Shepherd RK; Clark GM
    Acta Otolaryngol Suppl; 1993; 505():1-39. PubMed ID: 8379315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The measurement of pneumatized mastoid and facial recess in cochlear implant recipients younger than three years old].
    Tian H; Zhang D
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 2006 May; 20(10):441-3. PubMed ID: 16883787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age as a Factor of Growth in Mastoid Thickness and Skull Width.
    Almuhawas FA; Dhanasingh AE; Mitrovic D; Abdelsamad Y; Alzhrani F; Hagr A; Al Sanosi A
    Otol Neurotol; 2020 Jun; 41(5):709-714. PubMed ID: 32080026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cochlear implantation in children: the problem of head growth.
    O'Donoghue GM; Jackler RK; Jenkins WM; Schindler RA
    Otolaryngol Head Neck Surg; 1986 Jan; 94(1):78-81. PubMed ID: 3081861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Postnatal development of the human temporal bone. III. Increase of growth of the temporal bone sectors].
    Schmidt HM; Dahm P
    Gegenbaurs Morphol Jahrb; 1977; 123(5):689-98. PubMed ID: 608577
    [No Abstract]   [Full Text] [Related]  

  • 7. [Indications for middle ear obliteration within the scope of cochlear implant management].
    Issing PR; Schönermark M; Kempf HG; Lenarz T
    Laryngorhinootologie; 1996 Dec; 75(12):727-31. PubMed ID: 9081277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pediatric cochlear implantation. Radiologic observations of skull growth.
    Xu J; Shepherd RK; Xu SA; Seldon HL; Clark GM
    Arch Otolaryngol Head Neck Surg; 1993 May; 119(5):525-34. PubMed ID: 8484942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Temporal bone tomography for cochlear implantation].
    Xiao L; Li Y; Hu Z; Sun J; Situ W
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2009 Jul; 34(7):672-4. PubMed ID: 19648685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aspects of temporal bone anatomy and pathology in conjunction with cochlear implant surgery.
    Stjernholm C
    Acta Radiol Suppl; 2003 Jul; 430():2-15. PubMed ID: 12834396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postnatal development of the facial canal. An investigation based on cadaver dissections and computed tomography.
    Weiglein AH
    Surg Radiol Anat; 1996; 18(2):115-23. PubMed ID: 8782317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of the facial recess: implications for cochlear implantation.
    Eby TL
    Laryngoscope; 1996 May; 106(5 Pt 2 Suppl 80):1-7. PubMed ID: 8618527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postnatal development of the middle ear: areal ratios in kittens.
    Thomas JP; Walsh EJ
    Otolaryngol Head Neck Surg; 1990 Sep; 103(3):427-35. PubMed ID: 2122373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Postnatal development of the human temporal bone. II. Pars mastoidea, pars tympanica and facies lateralis ossis temporalis].
    Schmidt HM; Dahm P
    Gegenbaurs Morphol Jahrb; 1977; 123(4):589-620. PubMed ID: 590715
    [No Abstract]   [Full Text] [Related]  

  • 15. Growth of the lateral surface of the temporal bone in children.
    Simms DL; Neely JG
    Laryngoscope; 1989 Aug; 99(8 Pt 1):795-9. PubMed ID: 2755287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of a cochlear implant electrode on the mechanical function of the inner ear.
    Huber AM; Hoon SJ; Sharouz B; Daniel B; Albrecht E
    Otol Neurotol; 2010 Apr; 31(3):512-8. PubMed ID: 20061991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sheep as a large animal model for middle and inner ear implantable hearing devices: a feasibility study in cadavers.
    Schnabl J; Glueckert R; Feuchtner G; Recheis W; Potrusil T; Kuhn V; Wolf-Magele A; Riechelmann H; Sprinzl GM
    Otol Neurotol; 2012 Apr; 33(3):481-9. PubMed ID: 22410732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topographical anatomy and morphometry of the temporal bone of the macaque.
    Wysocki J
    Folia Morphol (Warsz); 2009 Feb; 68(1):13-22. PubMed ID: 19384825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computed tomography supports histopathologic evidence of vestibulocochlear sexual dimorphism.
    Marcus S; Whitlow CT; Koonce J; Zapadka ME; Chen MY; Williams DW; Lewis M; Evans AK
    Int J Pediatr Otorhinolaryngol; 2013 Jul; 77(7):1118-22. PubMed ID: 23688380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphometric properties of the facial canal in children: A retrospective computed tomography study.
    Beger O; Erdoğan O; Kara E; Vayisoğlu Y; Görür K; İsmi O; Gayi S; Hamzaoğlu V; Özalp H; Dağtekin A; Bağdatoğlu C; Öztürk AH; Talas DÜ
    Int J Pediatr Otorhinolaryngol; 2019 Sep; 124():59-67. PubMed ID: 31163359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.