These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 37555783)
1. Tumor-Targeting Probe for Dual-Modal Imaging of Cysteine In Vivo. Gu QS; Yang ZC; Chao JJ; Li L; Mao GJ; Xu F; Li CY Anal Chem; 2023 Aug; 95(33):12478-12486. PubMed ID: 37555783 [TBL] [Abstract][Full Text] [Related]
2. Glutathione-activated biotin-targeted dual-modal imaging probe with improved PDT/PTT synergistic therapy. Yang ZC; Gu QS; Chao JJ; Tan FY; Mao GJ; Hu L; Ouyang J; Li CY Anal Chim Acta; 2024 Aug; 1316():342860. PubMed ID: 38969429 [TBL] [Abstract][Full Text] [Related]
3. A Tumor-Targeting Dual-Modal imaging probe for nitroreductase in vivo. Li T; Yang ZC; Wang ZQ; Peng ZZ; Mao GJ; Jiang YQ; Li CY Bioorg Chem; 2024 Aug; 149():107531. PubMed ID: 38850779 [TBL] [Abstract][Full Text] [Related]
4. Photoacoustic/fluorescence dual-modality cyanine-based probe for real-time imaging of endogenous cysteine and in situ diagnosis of cervical cancer in vivo. Zou X; Zhao Y; Lin W Anal Chim Acta; 2023 Jan; 1239():340713. PubMed ID: 36628718 [TBL] [Abstract][Full Text] [Related]
5. Near-Infrared Fluorescent and Photoacoustic Dual-Mode Probe for Highly Sensitive and Selective Imaging of Cysteine Chen Z; Wang B; Liang Y; Shi L; Cen X; Zheng L; Liang E; Huang L; Cheng K Anal Chem; 2022 Aug; 94(30):10737-10744. PubMed ID: 35876030 [TBL] [Abstract][Full Text] [Related]
6. Development of a NIR fluorescent probe for highly selective and sensitive detection of cysteine in living cells and in vivo. Qi S; Zhang H; Wang X; Lv J; Liu D; Shen W; Li Y; Du J; Yang Q Talanta; 2021 Nov; 234():122685. PubMed ID: 34364484 [TBL] [Abstract][Full Text] [Related]
7. A dual-response NIR fluorescent probe for separately and continuously recognizing H Yue L; Ai Y; Liu G; Ding H; Pu S Analyst; 2023 Sep; 148(19):4829-4836. PubMed ID: 37622291 [TBL] [Abstract][Full Text] [Related]
8. A novel xanthylene-based effective mitochondria-targeting ratiometric cysteine probe and its bioimaging in living cells. Yang XZ; Wei XR; Sun R; Xu YJ; Ge JF Talanta; 2020 Mar; 209():120580. PubMed ID: 31892055 [TBL] [Abstract][Full Text] [Related]
9. Long-Term Imaging of Cys in Cells and Tumor Mice by a Solid-State Fluorescence Probe. Fu GQ; Song Q; Wang ZQ; Chao JJ; Zhang H; Mao GJ; Chen DH; Li CY Anal Chem; 2023 Dec; 95(48):17559-17567. PubMed ID: 37994418 [TBL] [Abstract][Full Text] [Related]
10. A dual-site fluorescent probe for direct and highly selective detection of cysteine and its application in living cells. Wang P; Wang Q; Huang J; Li N; Gu Y Biosens Bioelectron; 2017 Jun; 92():583-588. PubMed ID: 27829568 [TBL] [Abstract][Full Text] [Related]
11. Improved Aromatic Substitution-Rearrangement-Based Ratiometric Fluorescent Cysteine-Specific Probe and Its Application of Real-Time Imaging under Oxidative Stress in Living Zebrafish. He L; Yang X; Xu K; Lin W Anal Chem; 2017 Sep; 89(17):9567-9573. PubMed ID: 28791863 [TBL] [Abstract][Full Text] [Related]
12. A novel intramolecular charge transfer-based near-infrared fluorescent probe with large Stokes shift for highly sensitive detection of cysteine in vivo. Ding X; Yang B; Liu Z; Shen M; Fan Z; Wang X; Yu W Anal Chim Acta; 2023 Nov; 1280():341873. PubMed ID: 37858558 [TBL] [Abstract][Full Text] [Related]
13. A near-infrared fluorescent probe for viscosity: Differentiating cancer cells from normal cells and dual-modal imaging in tumor mice. Chao JJ; Zhang H; Wang ZQ; Liu QR; Mao GJ; Li Y; Li CY Anal Chim Acta; 2024 Jan; 1285():342024. PubMed ID: 38057061 [TBL] [Abstract][Full Text] [Related]
14. A near-infrared fluorescent probe based on BODIPY derivative with high quantum yield for selective detection of exogenous and endogenous cysteine in biological samples. Li SJ; Fu YJ; Li CY; Li YF; Yi LH; Ou-Yang J Anal Chim Acta; 2017 Nov; 994():73-81. PubMed ID: 29126471 [TBL] [Abstract][Full Text] [Related]
15. A near-infrared hepatocyte-targeting probe based on Tricyanofuran to detect cysteine in vivo: Design, synthesis and evaluation. Linghu Y; Liu M; Wang M; Luo Y; Lan W; Wang J Spectrochim Acta A Mol Biomol Spectrosc; 2024 Dec; 322():124802. PubMed ID: 38996760 [TBL] [Abstract][Full Text] [Related]
16. Photoacoustic/Fluorescence Dual-Modality Probe for Biothiol Discrimination and Tumor Diagnosis in Cells and Mice. Zhang J; Zhang Y; Guo Q; Wen G; Xiao H; Qi S; Wang Y; Zhang H; Wang L; Sun H ACS Sens; 2022 Apr; 7(4):1105-1112. PubMed ID: 35357825 [TBL] [Abstract][Full Text] [Related]
17. A novel probe for colorimetric and near-infrared fluorescence detection of cysteine in aqueous solution, cells and zebrafish. Dai Y; Xue T; Zhang X; Misal S; Ji H; Qi Z Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():365-374. PubMed ID: 30921659 [TBL] [Abstract][Full Text] [Related]
18. A Near-Infrared Fluorescent and Photoacoustic Probe for Visualizing Biothiols Dynamics in Tumor and Liver. Ding W; Yao S; Chen Y; Wu Y; Li Y; He W; Guo Z Molecules; 2023 Feb; 28(5):. PubMed ID: 36903474 [TBL] [Abstract][Full Text] [Related]
19. A lysosome-targeted near-infrared fluorescent probe for imaging endogenous cysteine (Cys) in living cells. Cai S; Liu C; Jiao X; Zhao L; Zeng X J Mater Chem B; 2020 Mar; 8(11):2269-2274. PubMed ID: 32100785 [TBL] [Abstract][Full Text] [Related]
20. A new selective fluorescence probe with a quinoxalinone structure (QP-1) for cysteine and its application in live-cell imaging. Yang B; Xu J; Yuan ZH; Zheng DJ; He ZX; Jiao QC; Zhu HL Talanta; 2018 Nov; 189():629-635. PubMed ID: 30086969 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]