These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37555811)

  • 1. What Controls the Hole Formation of Nanodroplets: Hydrodynamic or Thermodynamic Instability?
    Wang YB; Wang YF; Ma Q; Yang YR; Lee DJ; Wang XD
    Langmuir; 2023 Aug; 39(33):11760-11768. PubMed ID: 37555811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal Model for the Maximum Spreading Factor of Impacting Nanodroplets: From Hydrophilic to Hydrophobic Surfaces.
    Wang YB; Wang YF; Gao SR; Yang YR; Wang XD; Chen M
    Langmuir; 2020 Aug; 36(31):9306-9316. PubMed ID: 32697096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaporation of Water Nanodroplets on Heated Surfaces: Does Nano Matter?
    Ruiz Pestana L; Head-Gordon T
    ACS Nano; 2022 Mar; 16(3):3563-3572. PubMed ID: 35107985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confinement Dynamics of Nanodroplets between Two Surfaces: Effects of Wettability and Electric Field.
    Liu D; Cao Q; Piao Z; Li L
    Chemphyschem; 2022 Dec; 23(24):e202200184. PubMed ID: 35986551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of molecular branching and surface wettability on solid-liquid surface tension and line-tension of liquid alkane surface nanodroplets.
    Jabbarzadeh A
    J Colloid Interface Sci; 2024 Jul; 666():355-370. PubMed ID: 38603878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Air at hydrophobic surfaces and kinetics of three phase contact formation.
    Krasowska M; Zawala J; Malysa K
    Adv Colloid Interface Sci; 2009; 147-148():155-69. PubMed ID: 19036351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directional passive transport of nanodroplets on general axisymmetric surfaces.
    Mo J; Wang C; Zeng J; Sha J; Li Z; Chen Y
    Phys Chem Chem Phys; 2022 Apr; 24(16):9727-9734. PubMed ID: 35412533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Surface Wettability on Bubble Formation and Motion.
    Xia Y; Gao X; Li R
    Langmuir; 2021 Dec; 37(49):14483-14490. PubMed ID: 34851638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple Nanodroplet Templating of Functional Surfaces with Tailored Wettability and Microstructures.
    Peng S; Zhang X
    Chem Asian J; 2017 Jul; 12(13):1538-1544. PubMed ID: 28397391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of air and water vapor environments on the hydrophobicity of surfaces.
    Weisensee PB; Neelakantan NK; Suslick KS; Jacobi AM; King WP
    J Colloid Interface Sci; 2015 Sep; 453():177-185. PubMed ID: 25985421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Going beyond the standard line tension: Size-dependent contact angles of water nanodroplets.
    Kanduč M
    J Chem Phys; 2017 Nov; 147(17):174701. PubMed ID: 29117696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Dynamics Simulation of Nanodroplets Impacting Stripe-Textured Surfaces.
    Li R; Zhu P; Yin Z; Xu Y
    Langmuir; 2022 Jun; 38(22):7058-7066. PubMed ID: 35608995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanodroplets Impact on Rough Surfaces: A Simulation and Theoretical Study.
    Gao S; Liao Q; Liu W; Liu Z
    Langmuir; 2018 May; 34(20):5910-5917. PubMed ID: 29708343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impingement of binary nanodroplets on rough surfaces: a molecular dynamics study.
    Xue Y; Wang H; Huang S; Bie X; Wang G; Fang M
    Sci Rep; 2024 Aug; 14(1):19030. PubMed ID: 39152235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets.
    Li H; Zeng XC
    ACS Nano; 2012 Mar; 6(3):2401-9. PubMed ID: 22356158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rupture and dewetting of water films on solid surfaces.
    Mulji N; Chandra S
    J Colloid Interface Sci; 2010 Dec; 352(1):194-201. PubMed ID: 20817200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of nanodroplets on cone-textured surfaces.
    Liu H; Zhang J; Luo J; Wen D
    Phys Rev E; 2023 Jun; 107(6-2):065101. PubMed ID: 37464703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Submillimeter-Sized Bubble Entrapment and a High-Speed Jet Emission during Droplet Impact on Solid Surfaces.
    Chen L; Li L; Li Z; Zhang K
    Langmuir; 2017 Jul; 33(29):7225-7230. PubMed ID: 28661691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coalescence-Induced Swift Jumping of Nanodroplets on Curved Surfaces.
    He X; Zhao L; Cheng J
    Langmuir; 2019 Jul; 35(30):9979-9987. PubMed ID: 31282161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanodroplets on rough hydrophilic and hydrophobic surfaces.
    Yang C; Tartaglino U; Persson BN
    Eur Phys J E Soft Matter; 2008 Feb; 25(2):139-52. PubMed ID: 18311474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.