These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 37555837)
1. An open natural language processing (NLP) framework for EHR-based clinical research: a case demonstration using the National COVID Cohort Collaborative (N3C). Liu S; Wen A; Wang L; He H; Fu S; Miller R; Williams A; Harris D; Kavuluru R; Liu M; Abu-El-Rub N; Schutte D; Zhang R; Rouhizadeh M; Osborne JD; He Y; Topaloglu U; Hong SS; Saltz JH; Schaffter T; Pfaff E; Chute CG; Duong T; Haendel MA; Fuentes R; Szolovits P; Xu H; Liu H J Am Med Inform Assoc; 2023 Nov; 30(12):2036-2040. PubMed ID: 37555837 [TBL] [Abstract][Full Text] [Related]
2. A taxonomy for advancing systematic error analysis in multi-site electronic health record-based clinical concept extraction. Fu S; Wang L; He H; Wen A; Zong N; Kumari A; Liu F; Zhou S; Zhang R; Li C; Wang Y; St Sauver J; Liu H; Sohn S J Am Med Inform Assoc; 2024 Jun; 31(7):1493-1502. PubMed ID: 38742455 [TBL] [Abstract][Full Text] [Related]
3. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review. Koleck TA; Dreisbach C; Bourne PE; Bakken S J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935 [TBL] [Abstract][Full Text] [Related]
4. Development and Evaluation of a Natural Language Processing Annotation Tool to Facilitate Phenotyping of Cognitive Status in Electronic Health Records: Diagnostic Study. Noori A; Magdamo C; Liu X; Tyagi T; Li Z; Kondepudi A; Alabsi H; Rudmann E; Wilcox D; Brenner L; Robbins GK; Moura L; Zafar S; Benson NM; Hsu J; R Dickson J; Serrano-Pozo A; Hyman BT; Blacker D; Westover MB; Mukerji SS; Das S J Med Internet Res; 2022 Aug; 24(8):e40384. PubMed ID: 36040790 [TBL] [Abstract][Full Text] [Related]
5. AssistMED project: Transforming cardiology cohort characterisation from electronic health records through natural language processing - Algorithm design, preliminary results, and field prospects. Maciejewski C; Ozierański K; Barwiołek A; Basza M; Bożym A; Ciurla M; Janusz Krajsman M; Maciejewska M; Lodziński P; Opolski G; Grabowski M; Cacko A; Balsam P Int J Med Inform; 2024 May; 185():105380. PubMed ID: 38447318 [TBL] [Abstract][Full Text] [Related]
6. Using natural language processing to identify opioid use disorder in electronic health record data. Singleton J; Li C; Akpunonu PD; Abner EL; Kucharska-Newton AM Int J Med Inform; 2023 Feb; 170():104963. PubMed ID: 36521420 [TBL] [Abstract][Full Text] [Related]
7. Natural language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review. Sim JA; Huang X; Horan MR; Stewart CM; Robison LL; Hudson MM; Baker JN; Huang IC Artif Intell Med; 2023 Dec; 146():102701. PubMed ID: 38042599 [TBL] [Abstract][Full Text] [Related]
8. FedFSA: Hybrid and federated framework for functional status ascertainment across institutions. Fu S; Jia H; Vassilaki M; Keloth VK; Dang Y; Zhou Y; Garg M; Petersen RC; St Sauver J; Moon S; Wang L; Wen A; Li F; Xu H; Tao C; Fan J; Liu H; Sohn S J Biomed Inform; 2024 Apr; 152():104623. PubMed ID: 38458578 [TBL] [Abstract][Full Text] [Related]
9. Natural language processing of clinical notes for identification of critical limb ischemia. Afzal N; Mallipeddi VP; Sohn S; Liu H; Chaudhry R; Scott CG; Kullo IJ; Arruda-Olson AM Int J Med Inform; 2018 Mar; 111():83-89. PubMed ID: 29425639 [TBL] [Abstract][Full Text] [Related]
10. CQL4NLP: Development and Integration of FHIR NLP Extensions in Clinical Quality Language for EHR-driven Phenotyping. Wen A; Rasmussen LV; Stone D; Liu S; Kiefer R; Adekkanattu P; Brandt PS; Pacheco JA; Luo Y; Wang F; Pathak J; Liu H; Jiang G AMIA Jt Summits Transl Sci Proc; 2021; 2021():624-633. PubMed ID: 34457178 [TBL] [Abstract][Full Text] [Related]
11. Augmented intelligence with natural language processing applied to electronic health records for identifying patients with non-alcoholic fatty liver disease at risk for disease progression. Van Vleck TT; Chan L; Coca SG; Craven CK; Do R; Ellis SB; Kannry JL; Loos RJF; Bonis PA; Cho J; Nadkarni GN Int J Med Inform; 2019 Sep; 129():334-341. PubMed ID: 31445275 [TBL] [Abstract][Full Text] [Related]
12. Natural Language Processing for Improved Characterization of COVID-19 Symptoms: Observational Study of 350,000 Patients in a Large Integrated Health Care System. Malden DE; Tartof SY; Ackerson BK; Hong V; Skarbinski J; Yau V; Qian L; Fischer H; Shaw SF; Caparosa S; Xie F JMIR Public Health Surveill; 2022 Dec; 8(12):e41529. PubMed ID: 36446133 [TBL] [Abstract][Full Text] [Related]
13. Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting. Le DV; Montgomery J; Kirkby KC; Scanlan J J Biomed Inform; 2018 Oct; 86():49-58. PubMed ID: 30118855 [TBL] [Abstract][Full Text] [Related]
14. Ascertainment of Delirium Status Using Natural Language Processing From Electronic Health Records. Fu S; Lopes GS; Pagali SR; Thorsteinsdottir B; LeBrasseur NK; Wen A; Liu H; Rocca WA; Olson JE; St Sauver J; Sohn S J Gerontol A Biol Sci Med Sci; 2022 Mar; 77(3):524-530. PubMed ID: 35239951 [TBL] [Abstract][Full Text] [Related]
15. Natural language processing of radiology reports for identification of skeletal site-specific fractures. Wang Y; Mehrabi S; Sohn S; Atkinson EJ; Amin S; Liu H BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 3):73. PubMed ID: 30943952 [TBL] [Abstract][Full Text] [Related]
16. Identifying Information Gaps in Electronic Health Records by Using Natural Language Processing: Gynecologic Surgery History Identification. Moon S; Carlson LA; Moser ED; Agnikula Kshatriya BS; Smith CY; Rocca WA; Gazzuola Rocca L; Bielinski SJ; Liu H; Larson NB J Med Internet Res; 2022 Jan; 24(1):e29015. PubMed ID: 35089141 [TBL] [Abstract][Full Text] [Related]
17. Natural Language Processing for Asthma Ascertainment in Different Practice Settings. Wi CI; Sohn S; Ali M; Krusemark E; Ryu E; Liu H; Juhn YJ J Allergy Clin Immunol Pract; 2018; 6(1):126-131. PubMed ID: 28634104 [TBL] [Abstract][Full Text] [Related]
18. A comparison of word embeddings for the biomedical natural language processing. Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670 [TBL] [Abstract][Full Text] [Related]
19. PASCLex: A comprehensive post-acute sequelae of COVID-19 (PASC) symptom lexicon derived from electronic health record clinical notes. Wang L; Foer D; MacPhaul E; Lo YC; Bates DW; Zhou L J Biomed Inform; 2022 Jan; 125():103951. PubMed ID: 34785382 [TBL] [Abstract][Full Text] [Related]
20. A Natural Language Processing Tool Offering Data Extraction for COVID-19 Related Information (DECOVRI). Heider PM; Pipaliya RM; Meystre SM Stud Health Technol Inform; 2022 Jun; 290():1062-1063. PubMed ID: 35673206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]