BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 37555888)

  • 1. Ancient fish lineages illuminate toll-like receptor diversification in early vertebrate evolution.
    Carlson KB; Nguyen C; Wcisel DJ; Yoder JA; Dornburg A
    Immunogenetics; 2023 Oct; 75(5):465-478. PubMed ID: 37555888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the TLR Family in
    Ji J; Ramos-Vicente D; Navas-Pérez E; Herrera-Úbeda C; Lizcano JM; Garcia-Fernàndez J; Escrivà H; Bayés À; Roher N
    Front Immunol; 2018; 9():2525. PubMed ID: 30450099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary History of the Toll-Like Receptor Gene Family across Vertebrates.
    Liu G; Zhang H; Zhao C; Zhang H
    Genome Biol Evol; 2020 Jan; 12(1):3615-3634. PubMed ID: 31800025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study on pattern recognition receptors in non-teleost ray-finned fishes and their evolutionary significance in primitive vertebrates.
    He Y; Pan H; Zhang G; He S
    Sci China Life Sci; 2019 Apr; 62(4):566-578. PubMed ID: 30929190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the relationship between extant innate immune receptors and the evolutionary origins of jawed vertebrate adaptive immunity.
    Dornburg A; Yoder JA
    Immunogenetics; 2022 Feb; 74(1):111-128. PubMed ID: 34981186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Holosteans contextualize the role of the teleost genome duplication in promoting the rise of evolutionary novelties in the ray-finned fish innate immune system.
    Dornburg A; Wcisel DJ; Zapfe K; Ferraro E; Roupe-Abrams L; Thompson AW; Braasch I; Ota T; Yoder JA
    Immunogenetics; 2021 Dec; 73(6):479-497. PubMed ID: 34510270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncovering a 500 million year old history and evidence of pseudogenization for TLR15.
    Neves F; Muñoz-Mérida A; Machado AM; Almeida T; Gaigher A; Esteves PJ; Castro LFC; Veríssimo A
    Front Immunol; 2022; 13():1020601. PubMed ID: 36605191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization of three toll-like receptors (TLR21, TLR22, and TLR25) from a primitive ray-finned fish Dabry's sturgeon (Acipenser dabryanus).
    Qi Z; Wang S; Zhu X; Yang Y; Han P; Zhang Q; Zhang S; Shao R; Xu Q; Wei Q
    Fish Shellfish Immunol; 2018 Nov; 82():200-211. PubMed ID: 30130656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-Wide Scan Reveals
    Wu Y; Xiao Y; Xiao Z; Ma Y; Zhao H; Gao G; Li J
    DNA Cell Biol; 2022 Oct; 41(10):879-892. PubMed ID: 36108301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toll-like receptors in bony fish: from genomics to function.
    Palti Y
    Dev Comp Immunol; 2011 Dec; 35(12):1263-72. PubMed ID: 21414346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive survey and genomic characterization of Toll-like receptors (TLRs) in channel catfish, Ictalurus punctatus: identification of novel fish TLRs.
    Quiniou SM; Boudinot P; Bengtén E
    Immunogenetics; 2013 Jul; 65(7):511-30. PubMed ID: 23558557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toll-like receptor pathway evolution in deuterostomes.
    Tassia MG; Whelan NV; Halanych KM
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):7055-7060. PubMed ID: 28630328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of toll-like receptors in the context of terrestrial ungulates and cetaceans diversification.
    Ishengoma E; Agaba M
    BMC Evol Biol; 2017 Feb; 17(1):54. PubMed ID: 28209121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and expression analysis of sixteen Toll-like receptor genes, TLR1, TLR2a, TLR2b, TLR3, TLR5M, TLR5S, TLR7-9, TLR13a-c, TLR14, TLR21-23 in mandarin fish Siniperca chuatsi.
    Wang KL; Chen SN; Huo HJ; Nie P
    Dev Comp Immunol; 2021 Aug; 121():104100. PubMed ID: 33862097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the chicken Toll-like receptor gene family: a story of gene gain and gene loss.
    Temperley ND; Berlin S; Paton IR; Griffin DK; Burt DW
    BMC Genomics; 2008 Feb; 9():62. PubMed ID: 18241342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toll-Like Receptor Evolution: Does Temperature Matter?
    Sousa C; Fernandes SA; Cardoso JCR; Wang Y; Zhai W; Guerreiro PM; Chen L; Canário AVM; Power DM
    Front Immunol; 2022; 13():812890. PubMed ID: 35237266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide identification and characterization of toll-like receptor genes in spotted sea bass (Lateolabrax maculatus) and their involvement in the host immune response to Vibrio harveyi infection.
    Fan H; Wang L; Wen H; Wang K; Qi X; Li J; He F; Li Y
    Fish Shellfish Immunol; 2019 Sep; 92():782-791. PubMed ID: 31288100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular evolution of vertebrate Toll-like receptors: evolutionary rate difference between their leucine-rich repeats and their TIR domains.
    Mikami T; Miyashita H; Takatsuka S; Kuroki Y; Matsushima N
    Gene; 2012 Jul; 503(2):235-43. PubMed ID: 22587897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification, molecular evolution of toll-like receptors in a Tibetan schizothoracine fish (Gymnocypris eckloni) and their expression profiles in response to acute hypoxia.
    Qi D; Xia M; Chao Y; Zhao Y; Wu R
    Fish Shellfish Immunol; 2017 Sep; 68():102-113. PubMed ID: 28698123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of toll-like receptor genes in silver pomfret (Pampus argenteus) and their involvement in the host immune response to Photobacterium damselae subsp. Damselae and Nocardia seriolae infection.
    Li Y; Hu J; Zhang Y; Yan K; Zhang M; Li Y; Huang X; Tang J; Yao T; Wang D; Xu S; Wang X; Zhou S; Yan X; Wang Y
    Fish Shellfish Immunol; 2023 Oct; 141():109071. PubMed ID: 37703936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.