These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 37556457)
1. Recommendations for finite element modelling of nickel-titanium stents-Verification and validation activities. Bernini M; Hellmuth R; Dunlop C; Ronan W; Vaughan TJ PLoS One; 2023; 18(8):e0283492. PubMed ID: 37556457 [TBL] [Abstract][Full Text] [Related]
2. Finite element analysis of the mechanical performance of self-expanding endovascular stents made with new nickel-free superelastic β-titanium alloys. Jia T; Guines D; Laillé D; Leotoing L; Gloriant T J Mech Behav Biomed Mater; 2024 Mar; 151():106345. PubMed ID: 38215658 [TBL] [Abstract][Full Text] [Related]
3. Determination effect of two different NiTi stents on the vessel wall and studying their flexibility using finite element method. Salemizadehparizi F; Mehrabi R Comput Methods Biomech Biomed Engin; 2022 Oct; 25(13):1520-1530. PubMed ID: 34967243 [TBL] [Abstract][Full Text] [Related]
4. Reliable Numerical Models of Nickel-Titanium Stents: How to Deduce the Specific Material Properties from Testing Real Devices. Berti F; Bridio S; Luraghi G; Pant S; Allegretti D; Pennati G; Petrini L Ann Biomed Eng; 2022 Apr; 50(4):467-481. PubMed ID: 35212855 [TBL] [Abstract][Full Text] [Related]
5. The impact of modeling choices on the assessment of Ni-Ti fatigue properties through surrogate specimens. Berti F; Petrini L Int J Numer Method Biomed Eng; 2023 Sep; 39(9):e3753. PubMed ID: 37424171 [TBL] [Abstract][Full Text] [Related]
6. Optimizing the compression resistance of low-nickel stainless steel coronary stents using finite element and response surface methodology. Wang L; Wang W; Jiang Y; Yuan Y J Biomech; 2024 Jul; 172():112227. PubMed ID: 39004042 [TBL] [Abstract][Full Text] [Related]
7. Shape-Setting of Self-Expanding Nickel-Titanium Laser-Cut and Wire-Braided Stents to Introduce a Helical Ridge. Bernini M; Hellmuth R; O'Sullivan M; Dunlop C; McKenna CG; Lucchetti A; Gries T; Ronan W; Vaughan TJ Cardiovasc Eng Technol; 2024 Jun; 15(3):317-332. PubMed ID: 38315312 [TBL] [Abstract][Full Text] [Related]
8. Finite element analysis and stent design: Reduction of dogboning. De Beule M; Van Impe R; Verhegghe B; Segers P; Verdonck P Technol Health Care; 2006; 14(4-5):233-41. PubMed ID: 17065746 [TBL] [Abstract][Full Text] [Related]
9. A Computational Approach for the Prediction of Fatigue Behaviour in Peripheral Stents: Application to a Clinical Case. Petrini L; Trotta A; Dordoni E; Migliavacca F; Dubini G; Lawford PV; Gosai JN; Ryan DM; Testi D; Pennati G Ann Biomed Eng; 2016 Feb; 44(2):536-47. PubMed ID: 26433586 [TBL] [Abstract][Full Text] [Related]
10. The role of inelastic deformations in the mechanical response of endovascular shape memory alloy devices. Petrini L; Bertini A; Berti F; Pennati G; Migliavacca F Proc Inst Mech Eng H; 2017 May; 231(5):391-404. PubMed ID: 28427320 [TBL] [Abstract][Full Text] [Related]
11. Self-expandable stent for thrombus removal modeling: Solid or beam finite elements? Luraghi G; Bridio S; Migliavacca F; Rodriguez Matas JF Med Eng Phys; 2022 Aug; 106():103836. PubMed ID: 35926960 [TBL] [Abstract][Full Text] [Related]
12. Self-expanding stent modelling and radial force accuracy. Ghriallais RN; Bruzzi M Comput Methods Biomech Biomed Engin; 2014; 17(4):318-33. PubMed ID: 22587464 [TBL] [Abstract][Full Text] [Related]
13. [Safety performance of self-expandable NiTi alloy stent]. Li Z; Yan W; Feng H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Apr; 37(2):334-339. PubMed ID: 32329287 [TBL] [Abstract][Full Text] [Related]
14. Carotid artery stenting using a novel self-expanding braided nickel-titanium stent: feasibility and safety porcine trial. Ahlhelm F; Kaufmann R; Ahlhelm D; Ong MF; Roth C; Reith W Cardiovasc Intervent Radiol; 2009 Sep; 32(5):1019-27. PubMed ID: 19533229 [TBL] [Abstract][Full Text] [Related]
15. Design optimization of stent and its dilatation balloon using kriging surrogate model. Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895 [TBL] [Abstract][Full Text] [Related]
16. Impact of carotid stent cell design on vessel scaffolding: a case study comparing experimental investigation and numerical simulations. Conti M; Van Loo D; Auricchio F; De Beule M; De Santis G; Verhegghe B; Pirrelli S; Odero A J Endovasc Ther; 2011 Jun; 18(3):397-406. PubMed ID: 21679082 [TBL] [Abstract][Full Text] [Related]
17. Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis. Zahedmanesh H; Lally C Med Biol Eng Comput; 2009 Apr; 47(4):385-93. PubMed ID: 19189146 [TBL] [Abstract][Full Text] [Related]
18. Influence of geometrical parameters on radial force during self-expanding stent deployment. Application for a variable radial stiffness stent. García A; Peña E; Martínez MA J Mech Behav Biomed Mater; 2012 Jun; 10():166-75. PubMed ID: 22520428 [TBL] [Abstract][Full Text] [Related]
19. Numerical investigations of the mechanical properties of braided vascular stents. Fu W; Xia Q; Yan R; Qiao A Biomed Mater Eng; 2018; 29(1):81-94. PubMed ID: 29254075 [TBL] [Abstract][Full Text] [Related]
20. Nickel-Titanium peripheral stents: Which is the best criterion for the multi-axial fatigue strength assessment? Berti F; Wang PJ; Spagnoli A; Pennati G; Migliavacca F; Edelman ER; Petrini L J Mech Behav Biomed Mater; 2021 Jan; 113():104142. PubMed ID: 33125952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]