These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 37556897)
1. Facilitation properties in electrically evoked compound action potentials depending on spatial location and on threshold. Dambon J; Mewes A; Beyer A; Dambon J; Ambrosch P; Hey M Hear Res; 2023 Oct; 438():108858. PubMed ID: 37556897 [TBL] [Abstract][Full Text] [Related]
2. SpeedCAP: An Efficient Method for Estimating Neural Activation Patterns Using Electrically Evoked Compound Action-Potentials in Cochlear Implant Users. Garcia C; Deeks JM; Goehring T; Borsetto D; Bance M; Carlyon RP Ear Hear; 2023 May-Jun 01; 44(3):627-640. PubMed ID: 36477611 [TBL] [Abstract][Full Text] [Related]
3. Late electrically-evoked compound action potentials as markers for acute micro-lesions of spiral ganglion neurons. Konerding W; Arenberg JG; Kral A; Baumhoff P Hear Res; 2022 Jan; 413():108057. PubMed ID: 32883545 [TBL] [Abstract][Full Text] [Related]
4. Across-site patterns of electrically evoked compound action potential amplitude-growth functions in multichannel cochlear implant recipients and the effects of the interphase gap. Schvartz-Leyzac KC; Pfingst BE Hear Res; 2016 Nov; 341():50-65. PubMed ID: 27521841 [TBL] [Abstract][Full Text] [Related]
5. Facilitation and refractoriness of the electrically evoked compound action potential. Hey M; Müller-Deile J; Hessel H; Killian M Hear Res; 2017 Nov; 355():14-22. PubMed ID: 28947082 [TBL] [Abstract][Full Text] [Related]
6. Changes in the Electrically Evoked Compound Action Potential over time After Implantation and Subsequent Deafening in Guinea Pigs. Ramekers D; Benav H; Klis SFL; Versnel H J Assoc Res Otolaryngol; 2022 Dec; 23(6):721-738. PubMed ID: 35948695 [TBL] [Abstract][Full Text] [Related]
7. Cochlear Implantation with the CI512 and CI532 Precurved Electrode Arrays: One-Year Speech Recognition and Intraoperative Thresholds of Electrically Evoked Compound Action Potentials. Videhult Pierre P; Eklöf M; Smeds H; Asp F Audiol Neurootol; 2019; 24(6):299-308. PubMed ID: 31846976 [TBL] [Abstract][Full Text] [Related]
8. The Effect of Interphase Gap on Neural Response of the Electrically Stimulated Cochlear Nerve in Children With Cochlear Nerve Deficiency and Children With Normal-Sized Cochlear Nerves. He S; Xu L; Skidmore J; Chao X; Jeng FC; Wang R; Luo J; Wang H Ear Hear; 2020; 41(4):918-934. PubMed ID: 31688319 [TBL] [Abstract][Full Text] [Related]
9. The impact of auditory nerve functional states on the correlations between human and computer decisions for electrically evoked compound action potential threshold. Li Q; Zhang C; Lu T; Xu C; Sun Z; Fan W; Wang Z; Li S Int J Pediatr Otorhinolaryngol; 2020 Apr; 131():109866. PubMed ID: 31945736 [TBL] [Abstract][Full Text] [Related]
10. Comparison of Two Measurement Paradigms to Determine Electrically Evoked Cochlear Nerve Responses and Their Correlation to Cochlear Nerve Cross-section in Infants and Young Children With Cochlear Implant. Schrank L; Nachtigäller P; Müller J; Hempel JM; Canis M; Spiegel JL; Rader T Otol Neurotol; 2024 Mar; 45(3):e206-e213. PubMed ID: 38361306 [TBL] [Abstract][Full Text] [Related]
11. Speech Perception Performance in Cochlear Implant Recipients Correlates to the Number and Synchrony of Excited Auditory Nerve Fibers Derived From Electrically Evoked Compound Action Potentials. Dong Y; Briaire JJ; Stronks HC; Frijns JHM Ear Hear; 2023 Mar-Apr 01; 44(2):276-286. PubMed ID: 36253905 [TBL] [Abstract][Full Text] [Related]
13. Measuring temporal response properties of auditory nerve fibers in cochlear implant recipients. Tabibi S; Kegel A; Lai WK; Bruce IC; Dillier N Hear Res; 2019 Sep; 380():187-196. PubMed ID: 31325737 [TBL] [Abstract][Full Text] [Related]
14. [Electrically evoked auditory nerve compound action potentials in Nucleus CI24M cochlear implant users]. Zhu X; Cao K; Pan T; Yang H; Wang Y Lin Chuang Er Bi Yan Hou Ke Za Zhi; 2002 Jan; 16(1):5-8. PubMed ID: 11944479 [TBL] [Abstract][Full Text] [Related]
15. Using the electrically-evoked compound action potential (ECAP) interphase gap effect to select electrode stimulation sites in cochlear implant users. Schvartz-Leyzac KC; Zwolan TA; Pfingst BE Hear Res; 2021 Jul; 406():108257. PubMed ID: 34020316 [TBL] [Abstract][Full Text] [Related]
17. Effect of Increasing Pulse Phase Duration on Neural Responsiveness of the Electrically Stimulated Cochlear Nerve. He S; Xu L; Skidmore J; Chao X; Riggs WJ; Wang R; Vaughan C; Luo J; Shannon M; Warner C Ear Hear; 2020; 41(6):1606-1618. PubMed ID: 33136636 [TBL] [Abstract][Full Text] [Related]
18. The Effect of Advanced Age on the Electrode-Neuron Interface in Cochlear Implant Users. Skidmore J; Carter BL; Riggs WJ; He S Ear Hear; 2022 Jul-Aug 01; 43(4):1300-1315. PubMed ID: 34935648 [TBL] [Abstract][Full Text] [Related]
19. A Broadly Applicable Method for Characterizing the Slope of the Electrically Evoked Compound Action Potential Amplitude Growth Function. Skidmore J; Ramekers D; Colesa DJ; Schvartz-Leyzac KC; Pfingst BE; He S Ear Hear; 2022; 43(1):150-164. PubMed ID: 34241983 [TBL] [Abstract][Full Text] [Related]
20. The Effect of Aging on the Electrically Evoked Compound Action Potential. Mussoi BS; Brown CJ Otol Neurotol; 2020 Aug; 41(7):e804-e811. PubMed ID: 32501933 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]