These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 37557998)
1. Immobilizing arsenic-enriched wastewater from utilization of crude antimony oxides as scorodite using a novel multivalent iron source. Tang Z; Tang X; Liu H; Xiao Z Chemosphere; 2023 Oct; 339():139751. PubMed ID: 37557998 [TBL] [Abstract][Full Text] [Related]
2. Mechanism and thermodynamics of scorodite formation by oxidative precipitation from arsenic-bearing solution. Tang Z; Tang X; Xiao Z; Liu H Environ Res; 2024 Jun; 250():118500. PubMed ID: 38387492 [TBL] [Abstract][Full Text] [Related]
3. Effect of iron reduction by enolic hydroxyl groups on the stability of scorodite in hydrometallurgical industries and arsenic mobilization. Yuan Z; Wang S; Ma X; Wang X; Zhang G; Jia Y; Zheng W Environ Sci Pollut Res Int; 2017 Dec; 24(34):26534-26544. PubMed ID: 28948427 [TBL] [Abstract][Full Text] [Related]
4. Removal of arsenic in acidic wastewater using Lead-Zinc smelting slag: From waste solid to As-stabilized mineral. Li Y; Qi X; Li G; Duan X; Yang N Chemosphere; 2022 Aug; 301():134736. PubMed ID: 35500627 [TBL] [Abstract][Full Text] [Related]
5. Hematite-catalysed scorodite formation as a novel arsenic immobilisation strategy under ambient conditions. Tabelin CB; Corpuz RD; Igarashi T; Villacorte-Tabelin M; Ito M; Hiroyoshi N Chemosphere; 2019 Oct; 233():946-953. PubMed ID: 31340422 [TBL] [Abstract][Full Text] [Related]
6. Partitioning and transformation behavior of arsenic during Fe(III)-As(III)-As(V)-SO Ma X; Zhang J; Gomez MA; Ding Y; Yao S; Lv H; Wang X; Wang S; Jia Y Sci Total Environ; 2021 Dec; 799():149474. PubMed ID: 34426338 [TBL] [Abstract][Full Text] [Related]
7. Scorodite dissolution kinetics: implications for arsenic release. Harvey MC; Schreiber ME; Rimstidt JD; Griffith MM Environ Sci Technol; 2006 Nov; 40(21):6709-14. PubMed ID: 17144300 [TBL] [Abstract][Full Text] [Related]
8. Scoping candidate minerals for stabilization of arsenic-bearing solid residuals. Raghav M; Shan J; Sáez AE; Ela WP J Hazard Mater; 2013 Dec; 263 Pt 2(0 2):525-32. PubMed ID: 24231323 [TBL] [Abstract][Full Text] [Related]
9. A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution. Jia Y; Zhang D; Pan R; Xu L; Demopoulos GP Water Res; 2012 Feb; 46(2):500-8. PubMed ID: 22142599 [TBL] [Abstract][Full Text] [Related]
10. Utilization of Lead Slag as In Situ Iron Source for Arsenic Removal by Forming Iron Arsenate. Chen P; Zhao Y; Yao J; Zhu J; Cao J Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363065 [TBL] [Abstract][Full Text] [Related]
11. Biogenic scorodite crystallization by Acidianus sulfidivorans for arsenic removal. Gonzalez-Contreras P; Weijma J; van der Weijden R; Buisman CJ Environ Sci Technol; 2010 Jan; 44(2):675-80. PubMed ID: 20017476 [TBL] [Abstract][Full Text] [Related]
12. Effects of Fe(II)-induced transformation of scorodite on arsenic solubility. Zhou J; Liu Y; Bu H; Liu P; Sun J; Wu F; Hua J; Liu C J Hazard Mater; 2022 May; 429():128274. PubMed ID: 35066222 [TBL] [Abstract][Full Text] [Related]
13. Coprecipitation of arsenate with iron(III) in aqueous sulfate media: effect of time, lime as base and co-ions on arsenic retention. Jia Y; Demopoulos GP Water Res; 2008 Feb; 42(3):661-8. PubMed ID: 17825873 [TBL] [Abstract][Full Text] [Related]
14. The effect of precursor speciation on the growth of scorodite in an atmospheric scorodite synthesis. Rong Z; Tang X; Wu L; Chen X; Dang W; Li X; Huang L; Wang Y R Soc Open Sci; 2020 Jan; 7(1):191619. PubMed ID: 32218981 [TBL] [Abstract][Full Text] [Related]
15. Arsenic release from microbial reduction of scorodite in the presence of electron shuttle in flooded soil. Fang Y; Chen M; Liu C; Dong L; Zhou J; Yi X; Ji D; Qiao J; Tong H J Environ Sci (China); 2023 Apr; 126():113-122. PubMed ID: 36503741 [TBL] [Abstract][Full Text] [Related]
16. The Chemical Oxidation and Immobilization of Arsenic and Antimony in Simulated AMD in Karst Areas. Zhu J; Liao P; Zhang P Bull Environ Contam Toxicol; 2022 Mar; 108(3):541-548. PubMed ID: 35230453 [TBL] [Abstract][Full Text] [Related]
17. The translocation of antimony in soil-rice system with comparisons to arsenic: Alleviation of their accumulation in rice by simultaneous use of Fe(II) and NO Wang X; Li F; Yuan C; Li B; Liu T; Liu C; Du Y; Liu C Sci Total Environ; 2019 Feb; 650(Pt 1):633-641. PubMed ID: 30212692 [TBL] [Abstract][Full Text] [Related]
18. In-situ oxidative arsenic precipitation as scorodite during carbon catalyzed enargite leaching process. Jahromi FG; Ghahreman A J Hazard Mater; 2018 Oct; 360():631-638. PubMed ID: 30153628 [TBL] [Abstract][Full Text] [Related]
19. Self-enhanced and efficient removal of arsenic from waste acid using magnetite as an in situ iron donator. Cai G; Zhu X; Li K; Qi X; Wei Y; Wang H; Hao F Water Res; 2019 Jun; 157():269-280. PubMed ID: 30959330 [TBL] [Abstract][Full Text] [Related]
20. Hydrothermal treatment of arsenic sulfide slag to immobilize arsenic into scorodite and recycle sulfur. Zhang W; Lu H; Liu F; Wang C; Zhang Z; Zhang J J Hazard Mater; 2021 Mar; 406():124735. PubMed ID: 33296758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]