These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 37558000)
1. Multi-objective optimization and parametric study of a hybrid waste gasification system integrated with reverse osmosis desalination. Rafieian P; Ashjaee M; Houshfar E Chemosphere; 2023 Oct; 339():139759. PubMed ID: 37558000 [TBL] [Abstract][Full Text] [Related]
2. Estimation of water footprint in seawater desalination with reverse osmosis process. Zhang X; Jiang J; Yuan F; Song W; Li J; Xing D; Zhao L; Dong W; Pan X; Gao X Environ Res; 2022 Mar; 204(Pt D):112374. PubMed ID: 34800537 [TBL] [Abstract][Full Text] [Related]
3. Life cycle cost of a hybrid forward osmosis - low pressure reverse osmosis system for seawater desalination and wastewater recovery. Valladares Linares R; Li Z; Yangali-Quintanilla V; Ghaffour N; Amy G; Leiknes T; Vrouwenvelder JS Water Res; 2016 Jan; 88():225-234. PubMed ID: 26512800 [TBL] [Abstract][Full Text] [Related]
4. Optimization of a near-zero-emission energy system for the production of desalinated water and cooling using waste energy of fuel cells. Lu J; Abed AM; Nag K; Fayed M; Deifalla A; Al-Zahrani A; Ghamry NA; Galal AM Chemosphere; 2023 Sep; 336():139035. PubMed ID: 37244560 [TBL] [Abstract][Full Text] [Related]
5. Use of high salinity water in a power plant by connecting a direct contact membrane distillation (DCMD) to a steam-injected gas turbine (STIG). Peymani A; Sadeghi J; Shahraki F; Samimi A Heliyon; 2023 Nov; 9(11):e21335. PubMed ID: 37954264 [TBL] [Abstract][Full Text] [Related]
6. An Assessment of Renewable Energies in a Seawater Desalination Plant with Reverse Osmosis Membranes. Leon F; Ramos A Membranes (Basel); 2021 Nov; 11(11):. PubMed ID: 34832112 [TBL] [Abstract][Full Text] [Related]
7. Optimization of Energy Efficiency, Operation Costs, Carbon Footprint and Ecological Footprint with Reverse Osmosis Membranes in Seawater Desalination Plants. Leon F; Ramos A; Perez-Baez SO Membranes (Basel); 2021 Oct; 11(10):. PubMed ID: 34677547 [TBL] [Abstract][Full Text] [Related]
8. Tri-objective optimization of a waste-to-energy plant with super critical carbon dioxide and multi-effect water desalination for building application based on biomass fuels. Zhu G; Tian C; Liu X; Yang Y; Wang S Chemosphere; 2023 Sep; 336():139108. PubMed ID: 37302493 [TBL] [Abstract][Full Text] [Related]
9. Reduction in environmental CO Hai T; Ali MA; Alizadeh A; Almojil SF; Almohana AI; Alali AF Chemosphere; 2023 Apr; 319():137847. PubMed ID: 36657576 [TBL] [Abstract][Full Text] [Related]
10. Techno-economic optimization and No Hai T; El-Shafay AS; Goyal V; Alshahri AH; Almujibah HR Chemosphere; 2023 Nov; 342():139782. PubMed ID: 37660791 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive analysis of a hybrid FO/crystallization/RO process for improving its economic feasibility to seawater desalination. Park K; Kim DY; Jang YH; Kim MG; Yang DR; Hong S Water Res; 2020 Mar; 171():115426. PubMed ID: 31887548 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamic Limitations and Exergy Analysis of Brackish Water Reverse Osmosis Desalination Process. Alsarayreh AA; Al-Obaidi MA; Ruiz-García A; Patel R; Mujtaba IM Membranes (Basel); 2021 Dec; 12(1):. PubMed ID: 35054536 [TBL] [Abstract][Full Text] [Related]
13. Reverse osmosis desalination: water sources, technology, and today's challenges. Greenlee LF; Lawler DF; Freeman BD; Marrot B; Moulin P Water Res; 2009 May; 43(9):2317-48. PubMed ID: 19371922 [TBL] [Abstract][Full Text] [Related]
14. Low-emission and energetically efficient co-gasification of coal by incorporating plastic waste: A modeling study. Hasanzadeh R; Mojaver P; Azdast T; Chitsaz A; Park CB Chemosphere; 2022 Jul; 299():134408. PubMed ID: 35341769 [TBL] [Abstract][Full Text] [Related]
15. A comparative life cycle assessment of hybrid osmotic dilution desalination and established seawater desalination and wastewater reclamation processes. Hancock NT; Black ND; Cath TY Water Res; 2012 Mar; 46(4):1145-54. PubMed ID: 22209275 [TBL] [Abstract][Full Text] [Related]
16. Performance assessment and multiobjective optimization of a biomass waste-fired gasification combined cycle for emission reduction. Hai T; Alshahri AH; Mohammed AS; Sharma A; Almujibah HR; Mohammed Metwally AS; Ullah M Chemosphere; 2023 Sep; 334():138980. PubMed ID: 37207897 [TBL] [Abstract][Full Text] [Related]
17. Forward osmosis niches in seawater desalination and wastewater reuse. Valladares Linares R; Li Z; Sarp S; Bucs SS; Amy G; Vrouwenvelder JS Water Res; 2014 Dec; 66():122-139. PubMed ID: 25201336 [TBL] [Abstract][Full Text] [Related]
18. A systematic construction of water-electricity cogeneration and thermal membrane coupling desalination technology using the waste heat in steel industry. Zhang Y; Yuan Z; Zhao L; Liao L; Zhao H Environ Res; 2022 Sep; 212(Pt C):113458. PubMed ID: 35577004 [TBL] [Abstract][Full Text] [Related]
19. Opportunities of Reducing the Energy Consumption of Seawater Reverse Osmosis Desalination by Exploiting Salinity Gradients. Aumesquet-Carreto MÁ; Ortega-Delgado B; García-Rodríguez L Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363601 [TBL] [Abstract][Full Text] [Related]
20. Techno-economic optimization of a new waste-to-energy plant for electricity, cooling, and desalinated water using various biomass for emission reduction. Hai T; Ma X; Singh Chauhan B; Mahmoud S; Al-Kouz W; Tong J; Salah B Chemosphere; 2023 Oct; 338():139398. PubMed ID: 37406939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]