These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 37558097)
1. Proton and Electron Ultrahigh-Dose-Rate Isodose Irradiations Produce Differences in Reactive Oxygen Species Yields. Thomas W; Sunnerberg J; Reed M; Gladstone DJ; Zhang R; Harms J; Swartz HM; Pogue BW Int J Radiat Oncol Biol Phys; 2024 Jan; 118(1):262-267. PubMed ID: 37558097 [TBL] [Abstract][Full Text] [Related]
2. Biological effects in normal cells exposed to FLASH dose rate protons. Buonanno M; Grilj V; Brenner DJ Radiother Oncol; 2019 Oct; 139():51-55. PubMed ID: 30850209 [TBL] [Abstract][Full Text] [Related]
3. FLASH Radiotherapy: Current Knowledge and Future Insights Using Proton-Beam Therapy. Hughes JR; Parsons JL Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899466 [TBL] [Abstract][Full Text] [Related]
4. Comparing radiolytic production of H Kacem H; Psoroulas S; Boivin G; Folkerts M; Grilj V; Lomax T; Martinotti A; Meer D; Ollivier J; Petit B; Safai S; Sharma RA; Togno M; Vilalta M; Weber DC; Vozenin MC Radiother Oncol; 2022 Oct; 175():197-202. PubMed ID: 35868604 [TBL] [Abstract][Full Text] [Related]
5. Proton radiation therapy (PRT) for pediatric optic pathway gliomas: comparison with 3D planned conventional photons and a standard photon technique. Fuss M; Hug EB; Schaefer RA; Nevinny-Stickel M; Miller DW; Slater JM; Slater JD Int J Radiat Oncol Biol Phys; 1999 Dec; 45(5):1117-26. PubMed ID: 10613303 [TBL] [Abstract][Full Text] [Related]
6. A Computer Modeling Study of Water Radiolysis at High Dose Rates. Relevance to FLASH Radiotherapy. Alanazi A; Meesungnoen J; Jay-Gerin JP Radiat Res; 2021 Feb; 195(2):149-162. PubMed ID: 33300999 [TBL] [Abstract][Full Text] [Related]
7. Gold nanoparticle enhanced proton therapy: A Monte Carlo simulation of the effects of proton energy, nanoparticle size, coating material, and coating thickness on dose and radiolysis yield. Peukert D; Kempson I; Douglass M; Bezak E Med Phys; 2020 Feb; 47(2):651-661. PubMed ID: 31725910 [TBL] [Abstract][Full Text] [Related]
8. Design and validation of a synchrotron proton beam line for FLASH radiotherapy preclinical research experiments. Titt U; Yang M; Wang X; Iga K; Fredette N; Schueler E; Lin SH; Zhu XR; Sahoo N; Koong AC; Zhang X; Mohan R Med Phys; 2022 Jan; 49(1):497-509. PubMed ID: 34800037 [TBL] [Abstract][Full Text] [Related]
9. Commissioning of a clinical pencil beam scanning proton therapy unit for ultra-high dose rates (FLASH). Nesteruk KP; Togno M; Grossmann M; Lomax AJ; Weber DC; Schippers JM; Safai S; Meer D; Psoroulas S Med Phys; 2021 Jul; 48(7):4017-4026. PubMed ID: 33963576 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of GATE-RTion (GATE/Geant4) Monte Carlo simulation settings for proton pencil beam scanning quality assurance. Winterhalter C; Taylor M; Boersma D; Elia A; Guatelli S; Mackay R; Kirkby K; Maigne L; Ivanchenko V; Resch AF; Sarrut D; Sitch P; Vidal M; Grevillot L; Aitkenhead A Med Phys; 2020 Nov; 47(11):5817-5828. PubMed ID: 32967037 [TBL] [Abstract][Full Text] [Related]
11. Feasibility of proton FLASH irradiation using a synchrocyclotron for preclinical studies. Darafsheh A; Hao Y; Zwart T; Wagner M; Catanzano D; Williamson JF; Knutson N; Sun B; Mutic S; Zhao T Med Phys; 2020 Sep; 47(9):4348-4355. PubMed ID: 32452558 [TBL] [Abstract][Full Text] [Related]
12. Radiation Chemical Yields of 7-Hydroxy-Coumarin-3-Carboxylic Acid for Proton- and Carbon-Ion Beams at Ultra-High Dose Rates: Potential Roles in FLASH Effects. Kusumoto T; Inaniwa T; Mizushima K; Sato S; Hojo S; Kitamura H; Konishi T; Kodaira S Radiat Res; 2022 Sep; 198(3):255-262. PubMed ID: 35738014 [TBL] [Abstract][Full Text] [Related]
13. Energy Spectra of Protons and Generated Secondary Electrons around the Bragg Peak in Materials of Interest in Proton Therapy. de Vera P; Abril I; Garcia-Molina R Radiat Res; 2018 Sep; 190(3):282-297. PubMed ID: 29995591 [TBL] [Abstract][Full Text] [Related]
14. Protons versus photons: a status assessment at the beginning of the 21st Century. Hug EB Radiother Oncol; 2004 Dec; 73 Suppl 2():S35-7. PubMed ID: 15971306 [TBL] [Abstract][Full Text] [Related]
15. Treatment planning with protons for pediatric retinoblastoma, medulloblastoma, and pelvic sarcoma: how do protons compare with other conformal techniques? Lee CT; Bilton SD; Famiglietti RM; Riley BA; Mahajan A; Chang EL; Maor MH; Woo SY; Cox JD; Smith AR Int J Radiat Oncol Biol Phys; 2005 Oct; 63(2):362-72. PubMed ID: 16168831 [TBL] [Abstract][Full Text] [Related]
17. Nuclear collision processes around the Bragg peak in proton therapy. Matsuzaki Y; Date H; Sutherland KL; Kiyanagi Y Radiol Phys Technol; 2010 Jan; 3(1):84-92. PubMed ID: 20821107 [TBL] [Abstract][Full Text] [Related]
18. Investigating the potential contribution of inter-track interactions within ultra-high dose-rate proton therapy. Thompson SJ; Prise KM; McMahon SJ Phys Med Biol; 2023 Feb; 68(5):. PubMed ID: 36731135 [No Abstract] [Full Text] [Related]
19. Detailed Monte-Carlo characterization of a Faraday cup for proton therapy. Ehwald J; Togno M; Lomax AJ; Weber DC; Safai S; Winterhalter C Med Phys; 2023 Sep; 50(9):5828-5841. PubMed ID: 37227735 [TBL] [Abstract][Full Text] [Related]
20. Application of a simple DNA damage model developed for electrons to proton irradiation. Matsuya Y; Kai T; Parisi A; Yoshii Y; Sato T Phys Med Biol; 2022 Oct; 67(21):. PubMed ID: 36228611 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]