These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 37558187)
1. The isolation of lignin with native-like structure. Wang Z; Deuss PJ Biotechnol Adv; 2023 Nov; 68():108230. PubMed ID: 37558187 [TBL] [Abstract][Full Text] [Related]
2. Fast microwave-assisted acidolysis: a new biorefinery approach for the zero-waste utilisation of lignocellulosic biomass to produce high quality lignin and fermentable saccharides. Zhou L; Santomauro F; Fan J; Macquarrie D; Clark J; Chuck CJ; Budarin V Faraday Discuss; 2017 Sep; 202():351-370. PubMed ID: 28665433 [TBL] [Abstract][Full Text] [Related]
3. Top chemical opportunities from carbohydrate biomass: a chemist's view of the Biorefinery. Dusselier M; Mascal M; Sels BF Top Curr Chem; 2014; 353():1-40. PubMed ID: 24842622 [TBL] [Abstract][Full Text] [Related]
4. Reductive catalytic fractionation as a novel pretreatment/lignin-first approach for lignocellulosic biomass valorization: A review. Jindal M; Uniyal P; Thallada B Bioresour Technol; 2023 Oct; 385():129396. PubMed ID: 37369316 [TBL] [Abstract][Full Text] [Related]
5. Valorization of lignin in polymer and composite systems for advanced engineering applications - A review. Collins MN; Nechifor M; Tanasă F; Zănoagă M; McLoughlin A; Stróżyk MA; Culebras M; Teacă CA Int J Biol Macromol; 2019 Jun; 131():828-849. PubMed ID: 30872049 [TBL] [Abstract][Full Text] [Related]
6. High-Value Chemicals from Electrocatalytic Depolymerization of Lignin: Challenges and Opportunities. Ayub R; Raheel A Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409138 [TBL] [Abstract][Full Text] [Related]
7. Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects. Cao L; Yu IKM; Liu Y; Ruan X; Tsang DCW; Hunt AJ; Ok YS; Song H; Zhang S Bioresour Technol; 2018 Dec; 269():465-475. PubMed ID: 30146182 [TBL] [Abstract][Full Text] [Related]
8. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Moreno AD; Ibarra D; Alvira P; Tomás-Pejó E; Ballesteros M Crit Rev Biotechnol; 2015; 35(3):342-54. PubMed ID: 24506661 [TBL] [Abstract][Full Text] [Related]
9. Biomass Fractionation and Lignin Fractionation towards Lignin Valorization. Xu J; Li C; Dai L; Xu C; Zhong Y; Yu F; Si C ChemSusChem; 2020 Sep; 13(17):4284-4295. PubMed ID: 32672385 [TBL] [Abstract][Full Text] [Related]
10. Engineering Ligninolytic Consortium for Bioconversion of Lignocelluloses to Ethanol and Chemicals. Bilal M; Nawaz MZ; Iqbal HMN; Hou J; Mahboob S; Al-Ghanim KA; Cheng H Protein Pept Lett; 2018; 25(2):108-119. PubMed ID: 29359652 [TBL] [Abstract][Full Text] [Related]
11. Recent advancement in lignin biorefinery: With special focus on enzymatic degradation and valorization. Li C; Chen C; Wu X; Tsang CW; Mou J; Yan J; Liu Y; Lin CSK Bioresour Technol; 2019 Nov; 291():121898. PubMed ID: 31395402 [TBL] [Abstract][Full Text] [Related]
12. Greener Routes to Biomass Waste Valorization: Lignin Transformation Through Electrocatalysis for Renewable Chemicals and Fuels Production. Garedew M; Lin F; Song B; DeWinter TM; Jackson JE; Saffron CM; Lam CH; Anastas PT ChemSusChem; 2020 Sep; 13(17):4214-4237. PubMed ID: 32460408 [TBL] [Abstract][Full Text] [Related]
13. Development of Anthony WE; Carr RR; DeLorenzo DM; Campbell TP; Shang Z; Foston M; Moon TS; Dantas G Biotechnol Biofuels; 2019; 12():192. PubMed ID: 31404385 [TBL] [Abstract][Full Text] [Related]
14. About Making Lignin Great Again-Some Lessons From the Past. Glasser WG Front Chem; 2019; 7():565. PubMed ID: 31555636 [TBL] [Abstract][Full Text] [Related]
15. Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery. Galkin MV; Samec JS ChemSusChem; 2016 Jul; 9(13):1544-58. PubMed ID: 27273230 [TBL] [Abstract][Full Text] [Related]
16. Journey of lignin from a roadblock to bridge for lignocellulose biorefineries: A comprehensive review. Sharma V; Tsai ML; Nargotra P; Chen CW; Sun PP; Singhania RR; Patel AK; Dong CD Sci Total Environ; 2023 Feb; 861():160560. PubMed ID: 36574559 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of lignins from side-streams generated in an olive tree pruning-based biorefinery: Bioethanol production and alkaline pulping. Santos JI; Fillat Ú; Martín-Sampedro R; Eugenio ME; Negro MJ; Ballesteros I; Rodríguez A; Ibarra D Int J Biol Macromol; 2017 Dec; 105(Pt 1):238-251. PubMed ID: 28690167 [TBL] [Abstract][Full Text] [Related]
18. Engineering Innovations, Challenges, and Opportunities for Lignocellulosic Biorefineries: Leveraging Biobased Polymer Production. Shapiro AJ; O'Dea RM; Li SC; Ajah JC; Bass GF; Epps TH Annu Rev Chem Biomol Eng; 2023 Jun; 14():109-140. PubMed ID: 37040783 [TBL] [Abstract][Full Text] [Related]
19. Total utilization of lignin and carbohydrates in Chen X; Zhang K; Xiao LP; Sun RC; Song G Biotechnol Biofuels; 2020; 13():2. PubMed ID: 31921351 [TBL] [Abstract][Full Text] [Related]
20. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Rahimi A; Ulbrich A; Coon JJ; Stahl SS Nature; 2014 Nov; 515(7526):249-52. PubMed ID: 25363781 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]