BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 37558448)

  • 1. Retrospective comparison of traditional and artificial intelligence-based heart failure phenotyping in a US health system to enable real-world evidence.
    Garan AR; Monda KL; Dent-Acosta RE; Riskin DJ; Gluckman TJ
    BMJ Open; 2023 Aug; 13(8):e073178. PubMed ID: 37558448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using artificial intelligence to identify patients with migraine and associated symptoms and conditions within electronic health records.
    Riskin D; Cady R; Shroff A; Hindiyeh NA; Smith T; Kymes S
    BMC Med Inform Decis Mak; 2023 Jul; 23(1):121. PubMed ID: 37452338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real world evidence in cardiovascular medicine: ensuring data validity in electronic health record-based studies.
    Hernandez-Boussard T; Monda KL; Crespo BC; Riskin D
    J Am Med Inform Assoc; 2019 Nov; 26(11):1189-1194. PubMed ID: 31414700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of a novel model for characterizing migraine outcomes within real-world data.
    Hindiyeh NA; Riskin D; Alexander K; Cady R; Kymes S
    J Headache Pain; 2022 Sep; 23(1):124. PubMed ID: 36131249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial intelligence approaches for phenotyping heart failure in U.S. Veterans Health Administration electronic health record.
    Shao Y; Zhang S; Raman VK; Patel SS; Cheng Y; Parulkar A; Lam PH; Moore H; Sheriff HM; Fonarow GC; Heidenreich PA; Wu WC; Ahmed A; Zeng-Treitler Q
    ESC Heart Fail; 2024 Jun; ():. PubMed ID: 38873749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moving Biosurveillance Beyond Coded Data Using AI for Symptom Detection From Physician Notes: Retrospective Cohort Study.
    McMurry AJ; Zipursky AR; Geva A; Olson KL; Jones JR; Ignatov V; Miller TA; Mandl KD
    J Med Internet Res; 2024 Apr; 26():e53367. PubMed ID: 38573752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Robust e-Epidemiology Tool in Phenotyping Heart Failure with Differentiation for Preserved and Reduced Ejection Fraction: the Electronic Medical Records and Genomics (eMERGE) Network.
    Bielinski SJ; Pathak J; Carrell DS; Takahashi PY; Olson JE; Larson NB; Liu H; Sohn S; Wells QS; Denny JC; Rasmussen-Torvik LJ; Pacheco JA; Jackson KL; Lesnick TG; Gullerud RE; Decker PA; Pereira NL; Ryu E; Dart RA; Peissig P; Linneman JG; Jarvik GP; Larson EB; Bock JA; Tromp GC; de Andrade M; Roger VL
    J Cardiovasc Transl Res; 2015 Nov; 8(8):475-83. PubMed ID: 26195183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing a FHIR-based EHR phenotyping framework: A case study for identification of patients with obesity and multiple comorbidities from discharge summaries.
    Hong N; Wen A; Stone DJ; Tsuji S; Kingsbury PR; Rasmussen LV; Pacheco JA; Adekkanattu P; Wang F; Luo Y; Pathak J; Liu H; Jiang G
    J Biomed Inform; 2019 Nov; 99():103310. PubMed ID: 31622801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ensembles of natural language processing systems for portable phenotyping solutions.
    Liu C; Ta CN; Rogers JR; Li Z; Lee J; Butler AM; Shang N; Kury FSP; Wang L; Shen F; Liu H; Ena L; Friedman C; Weng C
    J Biomed Inform; 2019 Dec; 100():103318. PubMed ID: 31655273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ascertaining Framingham heart failure phenotype from inpatient electronic health record data using natural language processing: a multicentre Atherosclerosis Risk in Communities (ARIC) validation study.
    Moore CR; Jain S; Haas S; Yadav H; Whitsel E; Rosamand W; Heiss G; Kucharska-Newton AM
    BMJ Open; 2021 Jun; 11(6):e047356. PubMed ID: 34127492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automating Access to Real-World Evidence.
    Gauthier MP; Law JH; Le LW; Li JJN; Zahir S; Nirmalakumar S; Sung M; Pettengell C; Aviv S; Chu R; Sacher A; Liu G; Bradbury P; Shepherd FA; Leighl NB
    JTO Clin Res Rep; 2022 Jun; 3(6):100340. PubMed ID: 35719866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Congestive heart failure information extraction framework for automated treatment performance measures assessment.
    Meystre SM; Kim Y; Gobbel GT; Matheny ME; Redd A; Bray BE; Garvin JH
    J Am Med Inform Assoc; 2017 Apr; 24(e1):e40-e46. PubMed ID: 27413122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying Information Gaps in Electronic Health Records by Using Natural Language Processing: Gynecologic Surgery History Identification.
    Moon S; Carlson LA; Moser ED; Agnikula Kshatriya BS; Smith CY; Rocca WA; Gazzuola Rocca L; Bielinski SJ; Liu H; Larson NB
    J Med Internet Res; 2022 Jan; 24(1):e29015. PubMed ID: 35089141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of left ventricular ejection fraction changes in heart failure patients using machine learning and electronic health records: a multi-site study.
    Adekkanattu P; Rasmussen LV; Pacheco JA; Kabariti J; Stone DJ; Yu Y; Jiang G; Luo Y; Brandt PS; Xu Z; Vekaria V; Xu J; Wang F; Benda NC; Peng Y; Goyal P; Ahmad FS; Pathak J
    Sci Rep; 2023 Jan; 13(1):294. PubMed ID: 36609415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Artificial Intelligence With Natural Language Processing to Combine Electronic Health Record's Structured and Free Text Data to Identify Nonvalvular Atrial Fibrillation to Decrease Strokes and Death: Evaluation and Case-Control Study.
    Elkin PL; Mullin S; Mardekian J; Crowner C; Sakilay S; Sinha S; Brady G; Wright M; Nolen K; Trainer J; Koppel R; Schlegel D; Kaushik S; Zhao J; Song B; Anand E
    J Med Internet Res; 2021 Nov; 23(11):e28946. PubMed ID: 34751659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial Intelligence-Enabled Software Prototype to Inform Opioid Pharmacovigilance From Electronic Health Records: Development and Usability Study.
    Sorbello A; Haque SA; Hasan R; Jermyn R; Hussein A; Vega A; Zembrzuski K; Ripple A; Ahadpour M
    JMIR AI; 2023; 2():. PubMed ID: 37771410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of Natural Language Processing of Electronic Health Records to Measure Goals-of-Care Discussions as a Clinical Trial Outcome.
    Lee RY; Kross EK; Torrence J; Li KS; Sibley J; Cohen T; Lober WB; Engelberg RA; Curtis JR
    JAMA Netw Open; 2023 Mar; 6(3):e231204. PubMed ID: 36862411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and External Validation of an Artificial Intelligence Model for Identifying Radiology Reports Containing Recommendations for Additional Imaging.
    Abbasi N; Lacson R; Kapoor N; Licaros A; Guenette JP; Burk KS; Hammer M; Desai S; Eappen S; Saini S; Khorasani R
    AJR Am J Roentgenol; 2023 Sep; 221(3):377-385. PubMed ID: 37073901
    [No Abstract]   [Full Text] [Related]  

  • 19. Development and validation of a heart failure with preserved ejection fraction cohort using electronic medical records.
    Patel YR; Robbins JM; Kurgansky KE; Imran T; Orkaby AR; McLean RR; Ho YL; Cho K; Michael Gaziano J; Djousse L; Gagnon DR; Joseph J
    BMC Cardiovasc Disord; 2018 Jun; 18(1):128. PubMed ID: 29954337
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.