BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37558950)

  • 1. Global Assessment of Drug Target Engagement and Selectivity of Covalent Cysteine-Reactive Inhibitors Using Alkyne-Functionalized Probes.
    Rothweiler EM; Huber KVM
    Methods Mol Biol; 2023; 2706():191-200. PubMed ID: 37558950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemoproteomic Profiling of Covalent XPO1 Inhibitors to Assess Target Engagement and Selectivity.
    Martin JG; Ward JA; Feyertag F; Zhang L; Couvertier S; Guckian K; Huber KVM; Johnson DS
    Chembiochem; 2021 Jun; 22(12):2116-2123. PubMed ID: 33887086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Advances in applications of activity-based chemical probes in the characterization of amino acid reactivities].
    Li J; Wang G; Ye M; Qin H
    Se Pu; 2023 Jan; 41(1):14-23. PubMed ID: 36633073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Different Competitive Proteome Profiling Approaches in Target Identification of Covalent Inhibitors.
    Xu J; Peng L; Guo C; Xu F; Lin DS; Tang Y; Li Z
    Chembiochem; 2022 Dec; 23(24):e202200389. PubMed ID: 36271784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the Versatility of the Covalent Thiol-Alkyne Reaction with Substituted Propargyl Warheads: A Deciding Role for the Cysteine Protease.
    Mons E; Kim RQ; van Doodewaerd BR; van Veelen PA; Mulder MPC; Ovaa H
    J Am Chem Soc; 2021 May; 143(17):6423-6433. PubMed ID: 33885283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-Acryloylindole-alkyne (NAIA) enables imaging and profiling new ligandable cysteines and oxidized thiols by chemoproteomics.
    Koo TY; Lai H; Nomura DK; Chung CY
    Nat Commun; 2023 Jun; 14(1):3564. PubMed ID: 37322008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isotopically-Labeled Iodoacetamide-Alkyne Probes for Quantitative Cysteine-Reactivity Profiling.
    Abo M; Li C; Weerapana E
    Mol Pharm; 2018 Mar; 15(3):743-749. PubMed ID: 29172527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysine-Targeted Inhibitors and Chemoproteomic Probes.
    Cuesta A; Taunton J
    Annu Rev Biochem; 2019 Jun; 88():365-381. PubMed ID: 30633551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable Heteroaromatic Sulfones Enhance in-Cell Cysteine Profiling.
    Motiwala HF; Kuo YH; Stinger BL; Palfey BA; Martin BR
    J Am Chem Soc; 2020 Jan; 142(4):1801-1810. PubMed ID: 31881155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemoproteomics identifies proteoform-selective caspase-2 inhibitors.
    Castellón JO; Ofori S; Armenta E; Burton N; Boatner LM; Takayoshi EE; Faragalla M; Zhou A; Tran K; Shek J; Yan T; Desai HS; Backus KM
    bioRxiv; 2023 Oct; ():. PubMed ID: 37961563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differently Tagged Probes for Protein Profiling of Mitochondria.
    Dong J; Hong D; Lang W; Huang J; Qian L; Zhu Q; Li L; Ge J
    Chembiochem; 2019 May; 20(9):1155-1160. PubMed ID: 30600897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ABPP-CoDEL: Activity-Based Proteome Profiling-Guided Discovery of Tyrosine-Targeting Covalent Inhibitors from DNA-Encoded Libraries.
    Jiang L; Liu S; Jia X; Gong Q; Wen X; Lu W; Yang J; Wu X; Wang X; Suo Y; Li Y; Uesugi M; Qu ZB; Tan M; Lu X; Zhou L
    J Am Chem Soc; 2023 Nov; 145(46):25283-25292. PubMed ID: 37857329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-gel activity-based protein profiling of a clickable covalent ERK1/2 inhibitor.
    Lebraud H; Wright DJ; East CE; Holding FP; O'Reilly M; Heightman TD
    Mol Biosyst; 2016 Aug; 12(9):2867-74. PubMed ID: 27385078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplexed CuAAC Suzuki-Miyaura Labeling for Tandem Activity-Based Chemoproteomic Profiling.
    Cao J; Boatner LM; Desai HS; Burton NR; Armenta E; Chan NJ; Castellón JO; Backus KM
    Anal Chem; 2021 Feb; 93(4):2610-2618. PubMed ID: 33470097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of Reactive Cysteine Profiling.
    Backus KM
    Curr Top Microbiol Immunol; 2019; 420():375-417. PubMed ID: 30105421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemoproteomics Identifies State-Dependent and Proteoform-Selective Caspase-2 Inhibitors.
    Castellón JO; Ofori S; Burton NR; Julio AR; Turmon AC; Armenta E; Sandoval C; Boatner LM; Takayoshi EE; Faragalla M; Taylor C; Zhou AL; Tran K; Shek J; Yan T; Desai HS; Fregoso OI; Damoiseaux R; Backus KM
    J Am Chem Soc; 2024 Jun; 146(22):14972-14988. PubMed ID: 38787738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome-wide structural analysis identifies warhead- and coverage-specific biases in cysteine-focused chemoproteomics.
    White MEH; Gil J; Tate EW
    Cell Chem Biol; 2023 Jul; 30(7):828-838.e4. PubMed ID: 37451266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive-cysteine profiling for drug discovery.
    Maurais AJ; Weerapana E
    Curr Opin Chem Biol; 2019 Jun; 50():29-36. PubMed ID: 30897495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AzidoTMT Enables Direct Enrichment and Highly Multiplexed Quantitation of Proteome-Wide Functional Residues.
    Ma TP; Izrael-Tomasevic A; Mroue R; Budayeva H; Malhotra S; Raisner R; Evangelista M; Rose CM; Kirkpatrick DS; Yu K
    J Proteome Res; 2023 Jul; 22(7):2218-2231. PubMed ID: 37285454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methodology for Identification of Cysteine-Reactive Covalent Inhibitors.
    Kathman SG; Statsyuk AV
    Methods Mol Biol; 2019; 1967():245-262. PubMed ID: 31069775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.