BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37558965)

  • 1. Confocal Scanning Laser Ophthalmoscopy to Image Retinal Ganglion Cells in Real-Time.
    Hao L; Liu Y; Liu X; Lee RK
    Methods Mol Biol; 2023; 2708():115-121. PubMed ID: 37558965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time imaging of retinal cell apoptosis by confocal scanning laser ophthalmoscopy.
    Normando EM; Dehabadi MH; Guo L; Turner LA; Pollorsi G; Cordeiro MF
    Methods Mol Biol; 2015; 1254():227-37. PubMed ID: 25431069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo imaging of murine retinal ganglion cells.
    Leung CK; Lindsey JD; Crowston JG; Ju WK; Liu Q; Bartsch DU; Weinreb RN
    J Neurosci Methods; 2008 Mar; 168(2):475-8. PubMed ID: 18079000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longitudinal profile of retinal ganglion cell damage assessed with blue-light confocal scanning laser ophthalmoscopy after ischaemic reperfusion injury.
    Leung CK; Lindsey JD; Chen L; Liu Q; Weinreb RN
    Br J Ophthalmol; 2009 Jul; 93(7):964-8. PubMed ID: 19224902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Blue and Green Confocal Scanning Laser Ophthalmoscope Imaging to Detect Retinal Nerve Fiber Layer Defects.
    Joung JY; Lee WJ; Lee BR
    Korean J Ophthalmol; 2019 Apr; 33(2):131-137. PubMed ID: 30977322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Longitudinal profile of retinal ganglion cell damage after optic nerve crush with blue-light confocal scanning laser ophthalmoscopy.
    Leung CK; Lindsey JD; Crowston JG; Lijia C; Chiang S; Weinreb RN
    Invest Ophthalmol Vis Sci; 2008 Nov; 49(11):4898-902. PubMed ID: 18441315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal in vivo imaging of retinal ganglion cells and retinal thickness changes following optic nerve injury in mice.
    Chauhan BC; Stevens KT; Levesque JM; Nuschke AC; Sharpe GP; O'Leary N; Archibald ML; Wang X
    PLoS One; 2012; 7(6):e40352. PubMed ID: 22768284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo imaging and counting of rat retinal ganglion cells using a scanning laser ophthalmoscope.
    Higashide T; Kawaguchi I; Ohkubo S; Takeda H; Sugiyama K
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):2943-50. PubMed ID: 16799037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage.
    Kanamori A; Nagai-Kusuhara A; Escaño MF; Maeda H; Nakamura M; Negi A
    Graefes Arch Clin Exp Ophthalmol; 2006 Jan; 244(1):58-68. PubMed ID: 16044326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-Term Effects of a Photodisruptive Laser-Induced Traumatic Neuropathy Model.
    Xing X; Tong X; Liu Y; Tapia M; Jin P; Holley TD; Qiu O; Lee RK
    Transl Vis Sci Technol; 2021 Jul; 10(8):8. PubMed ID: 34251423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of retinal nerve fiber layer imaging by spectral domain optical coherence tomography and scanning laser ophthalmoscopy.
    Ye C; To E; Weinreb RN; Yu M; Liu S; Lam DS; Leung CK
    Ophthalmology; 2011 Nov; 118(11):2196-202. PubMed ID: 21762989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vivo Detection of Retinal Ganglion Cell Stress in Rodents with DARC.
    Hill D; Choi S; Cordeiro MF
    Methods Mol Biol; 2023; 2708():123-129. PubMed ID: 37558966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships between standard automated perimetry, HRT confocal scanning laser ophthalmoscopy, and GDx VCC scanning laser polarimetry.
    Reus NJ; Lemij HG
    Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):4182-8. PubMed ID: 16249497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nerve fiber layer thinning lags retinal ganglion cell density following crush axonopathy.
    Munguba GC; Galeb S; Liu Y; Landy DC; Lam D; Camp A; Samad S; Tapia ML; Lee RK
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6505-13. PubMed ID: 25228542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging retinal ganglion cells: enabling experimental technology for clinical application.
    Smith CA; Chauhan BC
    Prog Retin Eye Res; 2015 Jan; 44():1-14. PubMed ID: 25448921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of study design and spectrum bias on the evaluation of diagnostic accuracy of confocal scanning laser ophthalmoscopy in glaucoma.
    Medeiros FA; Ng D; Zangwill LM; Sample PA; Bowd C; Weinreb RN
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):214-22. PubMed ID: 17197535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Normative data of retinal arteriolar and venular calibre measurements determined using confocal scanning laser ophthalmoscopy system - Importance and implications for study of cardiometabolic disorders.
    Garg G; Venkatesh P; Chawla R; Takkar B; Temkar S; Damodaran S
    Indian J Ophthalmol; 2022 May; 70(5):1657-1663. PubMed ID: 35502046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature.
    Zhang P; Zam A; Jian Y; Wang X; Li Y; Lam KS; Burns ME; Sarunic MV; Pugh EN; Zawadzki RJ
    J Biomed Opt; 2015; 20(12):126005. PubMed ID: 26677070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging the optic nerve and ganglion cell layer.
    Fitzke FW
    Eye (Lond); 2000 Jun; 14 ( Pt 3B)():450-3. PubMed ID: 11026973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An optimized method for retrograde labelling and quantification of rabbit retinal ganglion cells.
    Wang Q; Lin X; Wang J
    Exp Eye Res; 2023 Apr; 229():109432. PubMed ID: 36822495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.