These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 37559085)

  • 1. Cracking the intestinal lymphatic system window utilizing oral delivery vehicles for precise therapy.
    Miao YB; Xu T; Gong Y; Chen A; Zou L; Jiang T; Shi Y
    J Nanobiotechnology; 2023 Aug; 21(1):263. PubMed ID: 37559085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting the intestinal lymphatic system: a versatile path for enhanced oral bioavailability of drugs.
    Managuli RS; Raut SY; Reddy MS; Mutalik S
    Expert Opin Drug Deliv; 2018 Aug; 15(8):787-804. PubMed ID: 30025212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Nano- and Microparticles as Oral Delivery Vehicles to Promote Intestinal Lymphatic Drug Transport.
    Miao YB; Lin YJ; Chen KH; Luo PK; Chuang SH; Yu YT; Tai HM; Chen CT; Lin KJ; Sung HW
    Adv Mater; 2021 Dec; 33(51):e2104139. PubMed ID: 34596293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic Liquids: Promising Approach for Oral Drug Delivery.
    Jiang L; Sun Y; Lu A; Wang X; Shi Y
    Pharm Res; 2022 Oct; 39(10):2353-2365. PubMed ID: 35449344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lymphatic Drug Transport and Associated Drug Delivery Technologies: A Comprehensive Review.
    Punjabi MS; Naha A; Shetty D; Nayak UY
    Curr Pharm Des; 2021; 27(17):1992-1998. PubMed ID: 33272166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid-Based Nanocarriers for Lymphatic Transportation.
    Vishwakarma N; Jain A; Sharma R; Mody N; Vyas S; Vyas SP
    AAPS PharmSciTech; 2019 Jan; 20(2):83. PubMed ID: 30673895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Interplay Between Liver First-Pass Effect and Lymphatic Absorption of Cannabidiol and Its Implications for Cannabidiol Oral Formulations.
    Franco V; Gershkovich P; Perucca E; Bialer M
    Clin Pharmacokinet; 2020 Dec; 59(12):1493-1500. PubMed ID: 32785853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of lymphatic transport in enhancing oral protein and peptide drug delivery.
    Wasan KM
    Drug Dev Ind Pharm; 2002 Oct; 28(9):1047-58. PubMed ID: 12455465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipidic prodrug approach for improved oral drug delivery and therapy.
    Markovic M; Ben-Shabat S; Keinan S; Aponick A; Zimmermann EM; Dahan A
    Med Res Rev; 2019 Mar; 39(2):579-607. PubMed ID: 30320896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smart design approaches for orally administered lipophilic prodrugs to promote lymphatic transport.
    Elz AS; Trevaskis NL; Porter CJH; Bowen JM; Prestidge CA
    J Control Release; 2022 Jan; 341():676-701. PubMed ID: 34896450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-micro Emulsifying Drug Delivery via Intestinal Lymphatics: A Lucrative Approach to Drug Targeting.
    Ramachandra DP; Sudheer P
    Pharm Nanotechnol; 2023 Jun; 11(3):238-264. PubMed ID: 37293951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of Nanoparticle Transport across Intestinal Tissue: An Oral Delivery Perspective.
    Ejazi SA; Louisthelmy R; Maisel K
    ACS Nano; 2023 Jul; 17(14):13044-13061. PubMed ID: 37410891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promising strategies for improving oral bioavailability of poor water-soluble drugs.
    Rocha B; de Morais LA; Viana MC; Carneiro G
    Expert Opin Drug Discov; 2023 Jun; 18(6):615-627. PubMed ID: 37157841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oral peptide delivery: Translational challenges due to physiological effects.
    Tyagi P; Pechenov S; Anand Subramony J
    J Control Release; 2018 Oct; 287():167-176. PubMed ID: 30145135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocrystals for Improving Oral Bioavailability of Drugs: Intestinal Transport Mechanisms and Influencing Factors.
    Tian Z; Mai Y; Meng T; Ma S; Gou G; Yang J
    AAPS PharmSciTech; 2021 Jun; 22(5):179. PubMed ID: 34128132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse approaches for the enhancement of oral drug bioavailability.
    Fasinu P; Pillay V; Ndesendo VM; du Toit LC; Choonara YE
    Biopharm Drug Dispos; 2011 May; 32(4):185-209. PubMed ID: 21480294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lymphatic Transport of Drugs after Intestinal Absorption: Impact of Drug Formulation and Physicochemical Properties.
    Ryšánek P; Grus T; Šíma M; Slanař O
    Pharm Res; 2020 Aug; 37(9):166. PubMed ID: 32770268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mucoadhesive carriers for oral drug delivery.
    Kumar R; Islam T; Nurunnabi M
    J Control Release; 2022 Nov; 351():504-559. PubMed ID: 36116580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update.
    Trevaskis NL; Charman WN; Porter CJ
    Adv Drug Deliv Rev; 2008 Mar; 60(6):702-16. PubMed ID: 18155316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs.
    Dahan A; Hoffman A
    J Control Release; 2008 Jul; 129(1):1-10. PubMed ID: 18499294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.