BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37559172)

  • 1. On-Chip Monolithically Integrated Ultraviolet Low-Threshold Plasmonic Metal-Semiconductor Heterojunction Nanolasers.
    Sun JY; Nguyen DH; Liu JM; Lo CY; Ma YR; Chen YJ; Yi JY; Huang JZ; Giap H; Nguyen HYT; Liao CD; Lin MY; Lai CC
    Adv Sci (Weinh); 2023 Oct; 10(28):e2301493. PubMed ID: 37559172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A room temperature low-threshold ultraviolet plasmonic nanolaser.
    Zhang Q; Li G; Liu X; Qian F; Li Y; Sum TC; Lieber CM; Xiong Q
    Nat Commun; 2014 Sep; 5():4953. PubMed ID: 25247634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum.
    Chou YH; Wu YM; Hong KB; Chou BT; Shih JH; Chung YC; Chen PY; Lin TR; Lin CC; Lin SD; Lu TC
    Nano Lett; 2016 May; 16(5):3179-86. PubMed ID: 27089144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-Chip Monolithically Fabricated Plasmonic-Waveguide Nanolaser.
    Ho YL; Clark JK; Kamal ASA; Delaunay JJ
    Nano Lett; 2018 Dec; 18(12):7769-7776. PubMed ID: 30423249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Localized Surface Plasmon Nanolasers via Strong Coupling.
    Liao JW; Huang ZT; Wu CH; Gagrani N; Tan HH; Jagadish C; Chen KP; Lu TC
    Nano Lett; 2023 May; 23(10):4359-4366. PubMed ID: 37155142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolithically Integrated High-β Nanowire Lasers on Silicon.
    Mayer B; Janker L; Loitsch B; Treu J; Kostenbader T; Lichtmannecker S; Reichert T; Morkötter S; Kaniber M; Abstreiter G; Gies C; Koblmüller G; Finley JJ
    Nano Lett; 2016 Jan; 16(1):152-6. PubMed ID: 26618638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron-Beam-Driven III-Nitride Plasmonic Nanolasers in the Deep-UV and Visible Region.
    Tao T; Zhi T; Liu B; Chen P; Xie Z; Zhao H; Ren F; Chen D; Zheng Y; Zhang R
    Small; 2020 Jan; 16(1):e1906205. PubMed ID: 31793750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiconductor plasmonic nanolasers: current status and perspectives.
    Gwo S; Shih CK
    Rep Prog Phys; 2016 Aug; 79(8):086501. PubMed ID: 27459210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low threshold room-temperature UV surface plasmon polariton lasers with ZnO nanowires on single-crystal aluminum films with Al
    Liao YJ; Cheng CW; Wu BH; Wang CY; Chen CY; Gwo S; Chen LJ
    RSC Adv; 2019 Apr; 9(24):13600-13607. PubMed ID: 35519571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZnO Nanowires on Single-Crystalline Aluminum Film Coupled with an Insulating WO
    Agarwal A; Tien WY; Huang YS; Mishra R; Cheng CW; Gwo S; Lu MY; Chen LJ
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32867049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-exciton coupling dynamics and plasmonic lasing in a core-shell nanocavity.
    Wang R; Xu C; You D; Wang X; Chen J; Shi Z; Cui Q; Qiu T
    Nanoscale; 2021 Apr; 13(14):6780-6785. PubMed ID: 33885480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic Waveguide-Integrated Nanowire Laser.
    Bermúdez-Ureña E; Tutuncuoglu G; Cuerda J; Smith CL; Bravo-Abad J; Bozhevolnyi SI; Fontcuberta I Morral A; García-Vidal FJ; Quidant R
    Nano Lett; 2017 Feb; 17(2):747-754. PubMed ID: 28045536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-crystalline aluminum film for ultraviolet plasmonic nanolasers.
    Chou BT; Chou YH; Wu YM; Chung YC; Hsueh WJ; Lin SW; Lu TC; Lin TR; Lin SD
    Sci Rep; 2016 Jan; 6():19887. PubMed ID: 26814581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanowire Oligomer Waveguide Modes towards Reduced Lasing Threshold.
    Mäntynen H; Anttu N; Lipsanen H
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33287138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lasing Action in Single Subwavelength Particles Supporting Supercavity Modes.
    Mylnikov V; Ha ST; Pan Z; Valuckas V; Paniagua-Domínguez R; Demir HV; Kuznetsov AI
    ACS Nano; 2020 Jun; 14(6):7338-7346. PubMed ID: 32459463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic Nanolasers in On-Chip Light Sources: Prospects and Challenges.
    Liang Y; Li C; Huang YZ; Zhang Q
    ACS Nano; 2020 Nov; 14(11):14375-14390. PubMed ID: 33119269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-mode nanolasers based on FP-WGM hybrid cavity coupling.
    Ullah S; Zhuge M; Zhang L; Fu X; Ma Y; Yang Q
    Nanotechnology; 2024 Feb; 35(20):. PubMed ID: 38350123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room-Temperature Gate Voltage Modulation of Plasmonic Nanolasers.
    Huang ZT; Chien TW; Cheng CW; Li CC; Chen KP; Gwo S; Lu TC
    ACS Nano; 2023 Apr; 17(7):6488-6496. PubMed ID: 36989057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip single-mode CdS nanowire laser.
    Bao Q; Li W; Xu P; Zhang M; Dai D; Wang P; Guo X; Tong L
    Light Sci Appl; 2020; 9():42. PubMed ID: 32194956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monolithically Integrated Perovskite Semiconductor Lasers on Silicon Photonic Chips by Scalable Top-Down Fabrication.
    Cegielski PJ; Giesecke AL; Neutzner S; Porschatis C; Gandini M; Schall D; Perini CAR; Bolten J; Suckow S; Kataria S; Chmielak B; Wahlbrink T; Petrozza A; Lemme MC
    Nano Lett; 2018 Nov; 18(11):6915-6923. PubMed ID: 30278610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.